Cho 2 vectơ $\overrightarrow{u}=\overrightarrow{AB}$, $\overrightarrow{v}=\overrightarrow{AC}$. Khi đó $\big(\overrightarrow{u},\overrightarrow{v}\big)$ bằng
![]() | $\widehat{ABC}$ |
![]() | $90^\circ$ |
![]() | $\widehat{ACB}$ |
![]() | $\widehat{BAC}$ |
Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 đường thẳng $AC$ và $B'C$.
![]() | $30^\circ$ |
![]() | $45^\circ$ |
![]() | $60^\circ$ |
![]() | $90^\circ$ |
Trong không gian, cho hai đường thẳng $d$ và $d'$ có vectơ chỉ phương lần lượt là $\overrightarrow{u}$ và $\overrightarrow{v}$. Biết rằng $\cos\big(\overrightarrow{u},\overrightarrow{v}\big)=-\dfrac{1}{2}$, góc giữa hai đường thẳng $d$ và $d$ bằng bao nhiêu độ?
![]() | $60^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $120^{\circ}$ |
![]() | $150^{\circ}$ |
Trong không gian cho hai vectơ $\overrightarrow{u}$, $\overrightarrow{v}$ tạo với nhau một góc $60^\circ$, $\left|\overrightarrow{u}\right|=2$ và $\left|\overrightarrow{v}\right|=3$. Tích vô hướng $\overrightarrow{u}\cdot\overrightarrow{v}$ bằng
![]() | $3$ |
![]() | $6$ |
![]() | $2$ |
![]() | $3\sqrt{3}$ |
Trong không gian $Oxyz$, gọi $\varphi$ là góc tạo bởi hai vectơ $\overrightarrow{a}=(3;-1;2)$ và $\overrightarrow{b}=(1;1;-1)$. Mệnh đề nào dưới đây đúng?
![]() | $\varphi=30^{\circ}$ |
![]() | $\varphi=45^{\circ}$ |
![]() | $\varphi=90^{\circ}$ |
![]() | $\varphi=60^{\circ}$ |
Cho ba số phức \(z_1,\,z_2,\,z_3\) phân biệt thỏa mãn \(\left|z_1\right|=\left|z_2\right|=\left|z_3\right|=3\) và \(\overline{z_1}+\overline{z_2}=\overline{z_3}\). Biết \(z_1,\,z_2,\,z_3\) lần lượt được biểu diễn bởi các điểm \(A,\,B,\,C\) trên mặt phẳng phức. Tính góc \(\widehat{ACB}\).
![]() | \(150^\circ\) |
![]() | \(90^\circ\) |
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
Trong không gian \(Oxyz\), cho ba điểm \(A(-2;1;0)\), \(B(-3;0;4)\), \(C(0;7;3)\). Tính \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)\).
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\sqrt{798}}{57}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{14\sqrt{118}}{354}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{\sqrt{798}}{57}\) |
![]() | \(\cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=-\dfrac{7\sqrt{118}}{177}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
![]() | \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) |
![]() | \(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) biết \(A(1;3)\), \(B(-2;-2)\) và \(C(3;1)\). Tính cosin góc \(A\) của tam giác \(ABC\).
![]() | \(\cos A=\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=\dfrac{1}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{2}{\sqrt{17}}\) |
![]() | \(\cos A=-\dfrac{1}{\sqrt{17}}\) |
Trong mặt phẳng \(Oxy\), cho hai điểm \(M(-2;-1)\) và \(N(3;-1)\). Tính số đo góc \(\widehat{MON}\).
![]() | \(\dfrac{\sqrt{2}}{2}\) |
![]() | \(-\dfrac{\sqrt{2}}{2}\) |
![]() | \(-135^\circ\) |
![]() | \(135^\circ\) |
Trong mặt phẳng \(Oxy\), góc giữa hai vectơ \(\vec{a}=(4;3)\) và \(\vec{b}=(-1;-7)\) có số đo bằng
![]() | \(135^\circ\) |
![]() | \(45^\circ\) |
![]() | \(30^\circ\) |
![]() | \(60^\circ\) |
Trong mặt phẳng \(Oxy\), cho \(\vec{a}=(2;5)\) và \(\vec{b}=(3;-7)\). Tính góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\).
![]() | \(60^\circ\) |
![]() | \(45^\circ\) |
![]() | \(135^\circ\) |
![]() | \(120^\circ\) |
Cho \(\vec{u}=\vec{a}+3\vec{b}\) vuông góc với \(\vec{v}=7\vec{a}-5\vec{b}\) và \(\vec{x}=\vec{a}-4\vec{b}\) vuông góc với \(\vec{y}=7\vec{a}-2\vec{b}\). Khi đó góc giữa hai vectơ \(\vec{a}\) và \(\vec{b}\) bằng.
![]() | \(\left(\vec{a},\vec{b}\right)=75^\circ\) |
![]() | \(\left(\vec{a},\vec{b}\right)=60^\circ\) |
![]() | \(\left(\vec{a},\vec{b}\right)=120^\circ\) |
![]() | \(\left(\vec{a},\vec{b}\right)=45^\circ\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(-3;4;0)\), \(\vec{b}=(5;0;12)\). Tính cosin góc giữa \(\vec{a}\) và \(\vec{b}\).
![]() | \(\dfrac{3}{13}\) |
![]() | \(-\dfrac{3}{13}\) |
![]() | \(-\dfrac{5}{6}\) |
![]() | \(\dfrac{5}{6}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(-1;1;0)\), \(\vec{v}=(0;-1;0)\). Góc giữa \(\vec{u}\) và \(\vec{v}\) có số đo bằng
![]() | \(120^\circ\) |
![]() | \(45^\circ\) |
![]() | \(135^\circ\) |
![]() | \(60^\circ\) |
Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
![]() | $60^\circ$ |
![]() | $45^\circ$ |
![]() | $30^\circ$ |
![]() | $75^\circ$ |
Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng
![]() | $90^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
![]() | $AB\perp BC$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp(ABC)$ |
![]() | $\big(SA,(ABC)\big)=90^\circ$ |