Cho hình lăng trụ có cạnh bên vuông góc với mặt đáy, khi đó các mặt bên của lăng trụ là hình gì?
Hình chữ nhật | |
Hình bình hành | |
Hình thoi | |
Hình vuông |
Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
$60^\circ$ | |
$45^\circ$ | |
$30^\circ$ | |
$75^\circ$ |
Hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$. Hình chiếu vuông góc của $A'$ lên mặt phẳng $(ABC)$ là điểm $I$ thuộc cạnh $BC$. Khoảng cách từ $A$ tới mặt phẳng $(A'BC)$ bằng
$\dfrac{2}{5}a$ | |
$\dfrac{\sqrt{3}}{2}a$ | |
$\dfrac{2a\sqrt{5}}{5}$ | |
$\dfrac{a\sqrt{5}}{5}$ |
Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
$a\perp(\alpha)$ | |
$a\parallel(\alpha)$ | |
$a\subset(\alpha)$ | |
$a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
$a\perp b$ | |
$a\parallel b$ | |
$a,\,b$ chéo nhau | |
$a,\,b$ cắt nhau |
Hai mặt phẳng $(P)$ và $(Q)$ thỏa mãn điều kiện nào sau đây thì $(P)$ và $(Q)$ song song với nhau?
$(P)$ chứa 2 đường thẳng $a,\,b$ song song mà $a,\,b$ cùng song song với $(Q)$ | |
$(P)$ chứa 2 đường thẳng $a,\,b$ cắt nhau mà $a,\,b$ cùng song song với $(Q)$ | |
$(P)$ chứa 2 đường thẳng $a,\,b$ mà $a,\,b$ cùng song song với $(Q)$ | |
$(P)$ chứa 1 đường thẳng $a$ mà $a$ song song với $(Q)$ |
Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 đường thẳng $AC$ và $B'C$.
$30^\circ$ | |
$45^\circ$ | |
$60^\circ$ | |
$90^\circ$ |
Cho hình lăng trụ $ABC.A'B'C'$. Chọn khẳng định đúng.
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AB}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AC'}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AB'}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AC}$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Giao tuyến của hai mặt phẳng $(\alpha)$ và $(ABC)$ có tồn tại không, nếu có thì giao tuyến đó đi qua điểm nào?
$B$ | |
$A$ | |
$C$ | |
Không tồn tại |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Mệnh đề nào sau đây là đúng?
$\Delta\subset(\alpha)$ | |
$\Delta\cap(\alpha)=A$ | |
$C\in(\alpha)$ | |
$\Delta\cap(\alpha)=B$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Xét mệnh đề "$B=\Delta\ldots\ldots(\alpha)$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
$\notin$ | |
$\in$ | |
$\subset$ | |
$\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Xét mệnh đề "$C\ldots\ldots\Delta$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
$\notin$ | |
$\in$ | |
$\subset$ | |
$\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Xét mệnh đề "$A\ldots\ldots\Delta$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
$\notin$ | |
$\in$ | |
$\subset$ | |
$\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Xét mệnh đề "$A\ldots\ldots(\alpha)$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
$\notin$ | |
$\in$ | |
$\subset$ | |
$\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Xét mệnh đề "$B\ldots\ldots(\alpha)$", hãy chọn ký hiệu thích hợp điền vào dấu "..." để được mệnh đề đúng.
$\notin$ | |
$\in$ | |
$\subset$ | |
$\cap$ |
Trong không gian, cho mặt phẳng $(\alpha)$, đường thẳng $\Delta$ và các điểm $A,\,B,\,C$ như hình vẽ.
Phần nét đứt trong hình vẽ thể hiện điều gì?
Phần không tồn tại | |
Phần thấy được | |
Phần không thấy được | |
Phần bị ẩn |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $BC=2a$ và $AA'=3a$ (tham khảo hình bên).
Khoảng cách giữa hai đường thẳng $BD$ và $A'C'$ bằng
$a$ | |
$a\sqrt{2}$ | |
$2a$ | |
$3a$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AC=2$, $AB=\sqrt{3}$ và $AA'=1$ (tham khảo hình bên).
Góc giữa hai mặt phẳng $(ABC')$ và $(ABC)$ bằng
$30^\circ$ | |
$45^\circ$ | |
$90^\circ$ | |
$60^\circ$ |
Cho tam giác $ABC$. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác $ABC$?
$1$ | |
$3$ | |
$4$ | |
$2$ |
Trong không gian cho $4$ điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
$6$ | |
$3$ | |
$4$ | |
$2$ |