Giải bất phương trình $\dfrac{x+11}{5-6x}$.
Giải bất phương trình $\dfrac{1}{x-1}+\dfrac{2}{x-2}>0$.
Tập nghiệm của bất phương trình \(\dfrac{3x-1}{x^2-4}\geq0\) là tập hợp nào sau đây?
![]() | \(T=\left(-2;\dfrac{1}{3}\right]\cup(2;+\infty)\) |
![]() | \(P=(-\infty;-2)\cup(2;+\infty)\) |
![]() | \(Q=(-2;2)\) |
![]() | \(S=(-\infty;-2)\cup\left[\dfrac{1}{3};2\right)\) |
Tìm tập nghiệm \(S\) của bất phương trình \(\dfrac{1}{x-1}\leq1\).
![]() | \(S=(-\infty;2]\) |
![]() | \(S=(1;+\infty)\) |
![]() | \(S=(1;2]\) |
![]() | \(S=(-\infty;1)\cup[2;+\infty)\) |
Tìm tất cả các nghiệm của bất phương trình \((2x-3)(5-3x)>0\).
![]() | \(x<\dfrac{3}{2},\,x>\dfrac{5}{3}\) |
![]() | \(x>\dfrac{5}{3}\) |
![]() | \(\dfrac{3}{2}< x<\dfrac{5}{3}\) |
![]() | \(x<\dfrac{3}{2}\) |
Tập nghiệm của bất phương trình \(\dfrac{-3x^2+2x+5}{x-1}\leq0\) là
![]() | \((-\infty;-1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
![]() | \((-1;1)\cup\left(\dfrac{5}{3};+\infty\right)\) |
![]() | \([-1;1]\cup\left[\dfrac{5}{3};+\infty\right)\) |
![]() | \([-1;1)\cup\left[\dfrac{5}{3};+\infty\right)\) |
Bất phương trình \(\dfrac{1}{x-1}+\dfrac{2}{x-2}>0\) có tập nghiệm là
![]() | \(\left(1;\dfrac{4}{3}\right]\cup(2;+\infty)\) |
![]() | \(\left(1;\dfrac{4}{3}\right)\cup(2;+\infty)\) |
![]() | \((-\infty;1)\cup\left[\dfrac{4}{3};2\right)\) |
![]() | \(\left(\dfrac{4}{3};2\right)\cup(-\infty;1)\) |
Tập nghiệm của bất phương trình \(\dfrac{x-1}{x+2}<0\) là
![]() | \((-2;1)\) |
![]() | \((-2;1]\) |
![]() | \((-\infty;-2)\cup(1;+\infty)\) |
![]() | \((-\infty;-2)\cup[1;+\infty)\) |
Có bao nhiêu giá trị nguyên dương của \(x\) thỏa mãn $$\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}<\dfrac{2x}{2x-x^2}?$$
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(3\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{x-7}{4x^2-19x+12}>0\) là
![]() | \(S=\left(-\infty;\dfrac{3}{4}\right)\cup(4;7)\) |
![]() | \(S=\left(\dfrac{3}{4};4\right)\cup(7;+\infty)\) |
![]() | \(S=\left(\dfrac{3}{4};4\right)\cup(4;+\infty)\) |
![]() | \(S=\left(\dfrac{3}{4};7\right)\cup(7;+\infty)\) |
Tìm tập nghiệm của bất phương trình \(\dfrac{x-1}{x+2}\leq0\).
![]() | \((-2;1]\) |
![]() | \((-\infty;-2)\cup[1;+\infty)\) |
![]() | \((-\infty;-2)\cup(1;+\infty)\) |
![]() | \([-2;1]\) |
Tập nghiệm của bất phương trình \(\dfrac{1}{x-1}\geq\dfrac{1}{x+1}\) là
![]() | \((-1;1)\) |
![]() | \((-\infty;-1)\cup(1;+\infty)\) |
![]() | \((-\infty;-1]\cup[1;+\infty)\) |
![]() | \((-\infty;-1)\) |
Giải bất phương trình $2x^2+5x+2\leq0$.
Tập nghiệm của bất phương trình \(\dfrac{3x}{4-x^2}\geq1\) là
![]() | \((-4;-2)\cup(1;2)\) |
![]() | \((-\infty;-4]\cup(-2;1]\cup(2;+\infty)\) |
![]() | \([-4;-2)\cup[1;2)\) |
![]() | \([-4;-2]\cup[1;2]\) |
Có bao nhiêu giá trị nguyên của \(x\) thỏa mãn bất phương trình \(\dfrac{x^4-x^2}{x^2+5x+6}\leq0\)?
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(3\) |
Tập nghiệm \(S\) của bất phương trình \(\dfrac{-2x^2+7x+7}{x^2-3x-10}\leq-1\) là
![]() | \(S=(-\infty;-2)\cup[1;3]\cup(5;+\infty)\) |
![]() | \(S=(-\infty;-2]\cup[1;3]\cup[5;+\infty)\) |
![]() | \(S=(-\infty;-2)\cup(1;3)\cup(5;+\infty)\) |
![]() | \(S=(-2;1]\cup[3;5)\) |
Giải bất phương trình \(x^3+3x^2-6x-8\geq0\).
![]() | \(S=[-4;-1]\cup[2;+\infty)\) |
![]() | \(S=(-4;-1)\cup(2;+\infty)\) |
![]() | \(S=[-1;+\infty)\) |
![]() | \(S=(-\infty;-4]\cup[-1;2]\) |
Tập nghiệm của bất phương trình \(x\left(16-x^2\right)\geq 0\) là
![]() | \([-4;4]\) |
![]() | \([-4;0]\cup[4;+\infty)\) |
![]() | \((-4;0)\cup(4;+\infty)\) |
![]() | \((-\infty;-4]\cup[0;4]\) |
Tập nghiệm của bất phương trình \(|2x-1|\leq x\) là
![]() | \(\left(\dfrac{1}{3};1\right)\) |
![]() | \(\left[\dfrac{1}{3};1\right]\) |
![]() | \(\mathbb{R}\) |
![]() | \(\varnothing\) |
Tổng các nghiệm nguyên của bất phương trình \(\dfrac{x-2}{\sqrt{x-4}}\leq\dfrac{4}{\sqrt{x-4}}\) bằng
![]() | \(15\) |
![]() | \(11\) |
![]() | \(26\) |
![]() | \(0\) |