Cho số phức \(z=a+b\mathrm{i}\) với \(a,\,b\in\mathbb{R}\). Mệnh đề nào sau đây sai?
Số phức \(z\) có phần thực là \(a\), phần ảo là \(b\mathrm{i}\) | |
Số phức \(z\) có môđun là \(\sqrt{a^2+b^2}\) | |
Số phức liên hợp của \(z\) là \(\overline{z}=a-b\mathrm{i}\) | |
\(z=0\Leftrightarrow a=b=0\) |
Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng
$1$ | |
$-1$ | |
$-i$ | |
$i$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
$z^2=|z|^2$ | |
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
Mô-đun của $z$ là một số thực dương |
Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng
$-\dfrac{11}{5}$ | |
$-\dfrac{11}{5}i$ | |
$\dfrac{11}{5}i$ | |
$\dfrac{11}{5}$ |
Cho số phức $z$ có phần thực là số nguyên và $z$ thỏa mãn $|z|-2\overline{z}=-7+3i+z$. Tính môđun của số phức $\omega=1-z$.
$|\omega|=\sqrt{37}$ | |
$|\omega|=3\sqrt{2}$ | |
$|\omega|=7$ | |
$|\omega|=5$ |
Cho số phức $z$ thỏa mãn $\overline{z}=\dfrac{(1-2i)(i-1)}{1+i}$. Tính môđun của số phức $w=iz$.
$3$ | |
$\sqrt{12}$ | |
$\sqrt{5}$ | |
$5$ |
Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng
$5$ | |
$2$ | |
$-5$ | |
$-2$ |
Cho số phức $z=a+bi$ với $a,\,b$ là các số thực. Khẳng định nào đúng?
$z+\overline{z}=2bi$ | |
$z-\overline{z}=2a$ | |
$z\cdot\overline{z}=a^2-b^2$ | |
$\left|z\right|=\left|\overline{z}\right|$ |
Cho số phức $z=-5+2i$. Phần thực và phần ảo của số phức $\overline{z}$ lần lượt là
$5$ và $-2$ | |
$5$ và $2$ | |
$-5$ và $2$ | |
$-5$ và $-2$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?
$4$ | |
$1$ | |
$3$ | |
$2$ |
Cho hai số phức \(z=1+2i\) và \(w=3+i\). Môđun của số phức \(z\cdot\overline{w}\) bằng
\(5\sqrt{2}\) | |
\(\sqrt{26}\) | |
\(26\) | |
\(50\) |
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng
\(2\) | |
\(\sqrt{2}\) | |
\(\sqrt{10}\) | |
\(10\) |
Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$
Phần thực là \(2\), phần ảo là \(4i\) | |
Phần thực là \(2\), phần ảo là \(-4i\) | |
Phần thực là \(2\), phần ảo là \(4\) | |
Phần thực là \(2\), phần ảo là \(-4\) |
Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).
Phần thực là \(4\) và phần ảo là \(3\) | |
Phần thực là \(4\) và phần ảo là \(-3i\) | |
Phần thực là \(4\) và phần ảo là \(3i\) | |
Phần thực là \(4\) và phần ảo là \(-3\) |
Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng
\(-3\) | |
\(3\) | |
\(3i\) | |
\(2i\) |
Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là
\(a^2+b^2\) và \(2a^2b^2\) | |
\(a+b\) và \(a^2b^2\) | |
\(a^2-b^2\) và \(2ab\) | |
\(a-b\) và \(ab\) |
Cho số phức \(z\) thỏa mãn \(|z|=2\) và \(\left|z^2+1\right|=4\). Tính \(\left|z+\overline{z}\right|+\left|z-\overline{z}\right|\).
\(3+\sqrt{7}\) | |
\(3+2\sqrt{2}\) | |
\(7+\sqrt{3}\) | |
\(16\) |
Cho \(z\) là một số thuần ảo khác \(0\). Mệnh đề nào sau đây đúng?
\(\overline{z}\) là số thực | |
Phần ảo của \(z\) bằng \(0\) | |
\(z=\overline{z}\) | |
\(z+\overline{z}=0\) |
Cho hai số phức \(z_1=-3+i\) và \(z_2=1-i\). Phần ảo của số phức \(z_1+\overline{z_2}\) bằng
\(-2\) | |
\(2i\) | |
\(2\) | |
\(-2i\) |
Cho số phức \(z\) thỏa mãn $$z+2\overline{z}=2+3\mathrm{i}$$Khi đó \(|z|\) bằng
\(\dfrac{\sqrt{29}}{3}\) | |
\(\dfrac{85}{3}\) | |
\(\dfrac{29}{3}\) | |
\(\dfrac{\sqrt{85}}{3}\) |