Ngân hàng bài tập

Bài tập tương tự

C

Cho số phức \(z=a+b\mathrm{i}\) với \(a,\,b\in\mathbb{R}\). Mệnh đề nào sau đây sai?

Số phức \(z\) có phần thực là \(a\), phần ảo là \(b\mathrm{i}\)
Số phức \(z\) có môđun là \(\sqrt{a^2+b^2}\)
Số phức liên hợp của \(z\) là \(\overline{z}=a-b\mathrm{i}\)
\(z=0\Leftrightarrow a=b=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z=1-3i$. Số phức $w=(1-i)z+\overline{z}$ có phần ảo bằng

$1$
$-1$
$-i$
$i$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?

Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$
$z^2=|z|^2$
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$
Mô-đun của $z$ là một số thực dương
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z$ thỏa mãn $(2-i)z=-3+7i$. Số phức liên hợp của $z$ có phần ảo bằng

$-\dfrac{11}{5}$
$-\dfrac{11}{5}i$
$\dfrac{11}{5}i$
$\dfrac{11}{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức $z$ có phần thực là số nguyên và $z$ thỏa mãn $|z|-2\overline{z}=-7+3i+z$. Tính môđun của số phức $\omega=1-z$.

$|\omega|=\sqrt{37}$
$|\omega|=3\sqrt{2}$
$|\omega|=7$
$|\omega|=5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z$ thỏa mãn $\overline{z}=\dfrac{(1-2i)(i-1)}{1+i}$. Tính môđun của số phức $w=iz$.

$3$
$\sqrt{12}$
$\sqrt{5}$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức $z$ thỏa mãn $i\overline{z}=5+2i$. Phần ảo của $z$ bằng

$5$
$2$
$-5$
$-2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ với $a,\,b$ là các số thực. Khẳng định nào đúng?

$z+\overline{z}=2bi$
$z-\overline{z}=2a$
$z\cdot\overline{z}=a^2-b^2$
$\left|z\right|=\left|\overline{z}\right|$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho số phức $z=-5+2i$. Phần thực và phần ảo của số phức $\overline{z}$ lần lượt là

$5$ và $-2$
$5$ và $2$
$-5$ và $2$
$-5$ và $-2$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?

  1. Môđun của $z$ là một số thực dương.
  2. $z^2=|z|^2$.
  3. $\left|\overline{z}\right|=\left|iz\right|=|z|$.
  4. Điểm $M(-a;b)$ biểu diễn số phức $\overline{z}$.
$4$
$1$
$3$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Cho hai số phức \(z=1+2i\) và \(w=3+i\). Môđun của số phức \(z\cdot\overline{w}\) bằng

\(5\sqrt{2}\)
\(\sqrt{26}\)
\(26\)
\(50\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng

\(2\)
\(\sqrt{2}\)
\(\sqrt{10}\)
\(10\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm phần thực, phần ảo của số phức $$z=\dfrac{3-i}{1+i}+\dfrac{2+i}{i}.$$

Phần thực là \(2\), phần ảo là \(4i\)
Phần thực là \(2\), phần ảo là \(-4i\)
Phần thực là \(2\), phần ảo là \(4\)
Phần thực là \(2\), phần ảo là \(-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hai số phức \(z_1=3+2i\) và \(z_2=1-5i\). Tìm phần thực và phần ảo của số phức \(z_1+z_2\).

Phần thực là \(4\) và phần ảo là \(3\)
Phần thực là \(4\) và phần ảo là \(-3i\)
Phần thực là \(4\) và phần ảo là \(3i\)
Phần thực là \(4\) và phần ảo là \(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức \(z\) thỏa mãn \(z+2\overline{z}=6-3i\) có phần ảo bằng

\(-3\)
\(3\)
\(3i\)
\(2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho số phức \(z=a+bi\). Số phức \(z^2\) có phần thực và phần ảo là

\(a^2+b^2\) và \(2a^2b^2\)
\(a+b\) và \(a^2b^2\)
\(a^2-b^2\) và \(2ab\)
\(a-b\) và \(ab\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho số phức \(z\) thỏa mãn \(|z|=2\) và \(\left|z^2+1\right|=4\). Tính \(\left|z+\overline{z}\right|+\left|z-\overline{z}\right|\).

\(3+\sqrt{7}\)
\(3+2\sqrt{2}\)
\(7+\sqrt{3}\)
\(16\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(z\) là một số thuần ảo khác \(0\). Mệnh đề nào sau đây đúng?

\(\overline{z}\) là số thực
Phần ảo của \(z\) bằng \(0\)
\(z=\overline{z}\)
\(z+\overline{z}=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hai số phức \(z_1=-3+i\) và \(z_2=1-i\). Phần ảo của số phức \(z_1+\overline{z_2}\) bằng

\(-2\)
\(2i\)
\(2\)
\(-2i\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho số phức \(z\) thỏa mãn $$z+2\overline{z}=2+3\mathrm{i}$$Khi đó \(|z|\) bằng

\(\dfrac{\sqrt{29}}{3}\)
\(\dfrac{85}{3}\)
\(\dfrac{29}{3}\)
\(\dfrac{\sqrt{85}}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự