Ngân hàng bài tập

Bài tập tương tự

C

Parabol $\left(\mathscr{P}\right)\colon y=x^2+4x+4$ có số điểm chung với trục hoành là

$0$
$1$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Gọi \(M\) và \(N\) là giao điểm của đồ thị hai hàm số \(y=x+1\) và \(y=\dfrac{2x+4}{x-1}\). Tìm hoành độ trung điểm \(I\) của đoạn thẳng \(MN\).

\(x_I=-\dfrac{5}{2}\)
\(x_I=2\)
\(x_I=\dfrac{5}{2}\)
\(x_I=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.

\(M\left(\dfrac{1}{2};0\right)\)
\(M\left(0;2\right)\)
\(M\left(0;-\dfrac{1}{2}\right)\)
\(M\left(-\dfrac{1}{2};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tiếp tuyến của đường cong \(\left(\mathscr{C}\right)\colon y=\dfrac{2x+1}{x-1}\) tại điểm \(M(2;5)\) cắt các trục tọa độ \(Ox\), \(Oy\) lần lượt tại \(A\) và \(B\). Tính diện tích tam giác \(OAB\).

\(\dfrac{121}{6}\)
\(\dfrac{121}{3}\)
\(-\dfrac{121}{6}\)
\(-\dfrac{121}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=\tan x\) có đồ thị như hình vẽ:

Khẳng định nào sau đây sai?

Hàm số đồng biến trên \(\left(-\dfrac{\pi}{2};0\right)\)
\(\tan x>0,\forall x\in\left(0;\dfrac{\pi}{2}\right)\)
Đồ thị hàm số luôn cắt trục hoành tại một điểm
Đồ thị hàm số nhận gốc tọa độ \(O\) làm tâm đối xứng nên hàm số \(y=\tan x\) là hàm số lẻ
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là

\(3\)
\(0\)
\(2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol \((P)\colon y=x^2\) và đường thẳng \(d\colon y=x\) xoay quanh trục \(Ox\) bằng

\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x-\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}x^2\mathrm{\,d}x+\pi\displaystyle\int\limits_{0}^{1}x^4\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)^2\mathrm{\,d}x\)
\(\pi\displaystyle\int\limits_{0}^{1}\left(x^2-x\right)\mathrm{\,d}x\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.

Kết luận nào sau đây đúng?

$ad>0$, $bc< 0$
$ad< 0$, $bc>0$
$ad< 0$, $bc< 0$
$ad>0$, $bc>0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.

Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?

$3$
$2$
$4$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới đây có bảng biến thiên như hình bên?

$y=-x^3+3x+1$
$y=\dfrac{x-1}{x+1}$
$y=\dfrac{x+1}{x-1}$
$y=x^4-x^2+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị là đường cong như hình vẽ.

Tọa độ giao điểm của đồ thị đã cho và trục tung là

$(4;0)$
$(0;4)$
$(0;3)$
$(3;0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là

$5$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.

Khi đó $a+b-c$ bằng

$-2$
$-1$
$1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?

$y=x^3-3x+3$
$y=x^3+3x+1$
$y=-x^3+3x+5$
$y=x^3-3x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số nghiệm của phương trình $f(x)-1=0$ là

$2$
$1$
$4$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.

Giá trị của tham số $m$ để phương trình $f(x)+1=m$ có ba nghiệm phân biệt là

$0< m< 4$
$1< m< 5$
$-1< m< 4$
$0< m< 5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết đường thẳng $y=x-1$ cắt đồ thị hàm số $y=\dfrac{-x+5}{x-2}$ tại hai điểm phân biệt có hoành độ là $x_1,\,x_2$. Giá trị $x_1+x_2$ bằng

$-1$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực của phương trình $f(x)=2$ là

$1$
$0$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng

$\dfrac{1}{2}$
$-1$
$-2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?

$2$
$5$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự