Cho hàm số bậc hai $y=f(x)$ có đồ thị $(P)$ và đường thẳng $d$ cắt $(P)$ tại hai điểm như trong hình vẽ bên.
Biết rằng hình phẳng giới hạn bởi $(P)$ và $d$ có diện tích $S=\dfrac{125}{9}$. Tích phân $\displaystyle\displaystyle\int\limits_1^6(2x-5)f'(x)\mathrm{~d}x$ bằng
![]() | $\dfrac{830}{9}$ |
![]() | $\dfrac{178}{9}$ |
![]() | $\dfrac{340}{9}$ |
![]() | $\dfrac{925}{18}$ |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $f(x)+x f'(x)=4x^3-6x^2$, $\forall x\in\mathbb{R}$. Diện tích hình phẳng giới hạn bởi các đường $y=f(x)$ và $y=f'(x)$ bằng
![]() | $\dfrac{7}{12}$ |
![]() | $\dfrac{45}{4}$ |
![]() | $\dfrac{1}{2}$ |
![]() | $\dfrac{71}{6}$ |
Cho hàm số $y=f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ và thỏa mãn $2f(x)+f'(x)=2x+1$, $\forall x\in\mathbb{R}$ và $f(0)=1$. Giá trị của $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$ bằng
![]() | $1-\dfrac{1}{2\mathrm{e}^2}$ |
![]() | $1+\dfrac{1}{2\mathrm{e}^2}$ |
![]() | $\dfrac{1}{2\mathrm{e}^2}$ |
![]() | $-\dfrac{1}{2\mathrm{e}^2}$ |
Biết $F(x)$ và $G(x)$ là hai nguyên hàm của hàm số $f(x)$ trên $\mathbb{R}$ và $\displaystyle\displaystyle\int\limits_{0}^{3}f(x)\mathrm{\,d}x=F(3)-G(0)+a$ ($a>0$). Gọi $S$ là diện tích hình phẳng giới hạn bởi các đường $y=F(x)$, $y=G(x)$, $x=0$ và $x=3$. Khi $S=15$ thì $a$ bằng
![]() | $15$ |
![]() | $12$ |
![]() | $18$ |
![]() | $5$ |
Cho hàm số $f(x)$ có đạo hàm $f'(x)$ liên tục trên $\mathbb{R}$ và thỏa mãn $\displaystyle\displaystyle\int\limits_{0}^{1}(3x+1)f'(x)\mathrm{\,d}x=2022$ và $4f(1)-f(0)=2028$. Giá trị của $I=\displaystyle\displaystyle\int\limits_{0}^{\tfrac{1}{4}}f(4x)\mathrm{\,d}x$ là
![]() | $2$ |
![]() | $\dfrac{2022}{3}$ |
![]() | $\dfrac{1}{2}$ |
![]() | $\dfrac{1}{4}$ |
Cho hàm số $f(x)$ liên tục trên $(0;+\infty)$. Biết $\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=f'(x)\ln x$ và $f(2)=\dfrac{1}{\ln2}$. Khi đó $\displaystyle\displaystyle\int\limits_{1}^{2}\dfrac{f(x)}{x}\mathrm{\,d}x$ bằng
![]() | $-\dfrac{7}{4}$ |
![]() | $\dfrac{1}{2}$ |
![]() | $-\dfrac{1}{2}$ |
![]() | $\dfrac{7}{4}$ |
Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng
![]() | $2\ln3$ |
![]() | $\ln3$ |
![]() | $\ln18$ |
![]() | $2\ln2$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng
![]() | $\dfrac{1073}{15}$ |
![]() | $\dfrac{458}{15}$ |
![]() | $\dfrac{838}{15}$ |
![]() | $\dfrac{1016}{15}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, thỏa mãn $f(x)+2f(2-x)=x^2-6x+4$. Tích phân $\displaystyle\displaystyle\int\limits_{-1}^3x f^{\prime}(x)\mathrm{d}x$ bằng
![]() | $20$ |
![]() | $\dfrac{149}{3}$ |
![]() | $\dfrac{167}{3}$ |
![]() | $\dfrac{176}{9}$ |
Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$ thỏa mãn $f(x)=x^2-3x+2\displaystyle\int\limits_{0}^{1}f(x)f'(x)\mathrm{\,d}x$. Khi đó $\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x$ bằng
![]() | $\dfrac{10}{3}$ |
![]() | $-\dfrac{10}{3}$ |
![]() | $\dfrac{26}{15}$ |
![]() | $-\dfrac{26}{15}$ |
Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
![]() | $2\mathrm{e}^2-1$ |
![]() | $-2\mathrm{e}^2-1$ |
![]() | $-2\mathrm{e}^2+1$ |
![]() | $2\mathrm{e}^2+1$ |
Cho hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
![]() | \(4< f(5)<5\) |
![]() | \(3< f(5)<4\) |
![]() | \(1< f(5)<2\) |
![]() | \(2< f(5)<3\) |
Cho hàm số \(y=f(x)\) có đồ thị \(f'(x)\) như hình vẽ.
Đặt \(g(x)=2f(x)-(x-1)^2\). Mệnh đề nào dưới đây đúng?
![]() | \(g(-1)< g(5)< g(3)\) |
![]() | \(g(3)< g(5)< g(-1)\) |
![]() | \(g(5)< g(-1)< g(3)\) |
![]() | \(g(-1)< g(3)< g(5)\) |
Đường gấp khúc $ABC$ trong hình vẽ bên là đồ thị của hàm số $y=f(x)$ trên đoạn $[-2;3]$.
Tích phân $\displaystyle\displaystyle\int\limits_{-2}^3f(x)\mathrm{~d}x$ bằng
![]() | $4$ |
![]() | $\dfrac{9}{2}$ |
![]() | $\dfrac{7}{2}$ |
![]() | $3$ |
Diện tích hình phẳng giới hạn bởi đồ thị của hàm số $y=x^5$, trục hoành và hai đường thẳng $x=-1$, $x=1$ bằng
![]() | $\dfrac{3}{2}$ |
![]() | $\dfrac{1}{3}$ |
![]() | $7$ |
![]() | $5$ |
Cho hai hàm số $f(x)=mx^3+nx^2+px-\dfrac{5}{2}$ $(m,\,n,\,p\in\mathbb{R})$ và $g(x)=x^2+2x-1$ có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là $-3$, $-1$, $1$ (tham khảo hình vẽ).
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số $f(x)$ và $g(x)$ bằng
![]() | $\dfrac{9}{2}$ |
![]() | $\dfrac{18}{5}$ |
![]() | $4$ |
![]() | $5$ |
Gọi $(H)$ là hình phẳng giới hạn bởi parabol $(P)\colon y=2x-x^2$ và trục hoành. Đường thẳng $y=mx$ chia hình $(H)$ thành hai phần có diện tích bằng nhau. Tính giá trị $m$.
![]() | $2-\sqrt[3]{4}$ |
![]() | $2-\sqrt{3}$ |
![]() | $2-\sqrt{4}$ |
![]() | $2-\sqrt[3]{5}$ |
Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=x^2$ và đường thẳng $y=2x$ là
![]() | $\dfrac{4}{3}$ |
![]() | $\dfrac{5}{3}$ |
![]() | $\dfrac{3}{2}$ |
![]() | $\dfrac{23}{15}$ |
Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$. Gọi $S$ là diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, trục hoành, đường thẳng $x=-1$, $x=5$ (như hình vẽ).
Mệnh đề nào sau đây đúng?
![]() | $S=\displaystyle\displaystyle\int\limits_{-1}^{1}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{5}f(x)\mathrm{\,d}x$ |
![]() | $S=-\displaystyle\displaystyle\int\limits_{-1}^{1}f(x)\mathrm{\,d}x-\displaystyle\int\limits_{1}^{5}f(x)\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{-1}^{1}f(x)\mathrm{\,d}x-\displaystyle\int\limits_{1}^{5}f(x)\mathrm{\,d}x$ |
![]() | $S=-\displaystyle\displaystyle\int\limits_{-1}^{1}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{1}^{5}f(x)\mathrm{\,d}x$ |
Cho hàm số $y=f(x)$, $y=g(x)$ liên tục trên $[a;b]$. Gọi $H$ là hình phẳng giới hạn bởi đồ thị hàm số $y=f(x)$, $y=g(x)$, trục hoành và hai đường thẳng $x=a$, $x=b$ ($a< b$). Diện tích của hình $H$ được tính theo công thức nào sau đây?
![]() | $S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$ |
![]() | $S=\pi\displaystyle\displaystyle\int\limits_{a}^{b}\big|f(x)-g(x)\big|\mathrm{\,d}x$ |
![]() | $S=\displaystyle\displaystyle\int\limits_{a}^{b}\big[f(x)-g(x)\big]\mathrm{\,d}x$ |