Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là
$2y+z=0$ | |
$2y-z=0$ | |
$y+z=0$ | |
$y-z=0$ |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ | |
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian $Oxyz$, xét mặt phẳng $(P)$ đi qua điểm $A(2;1;3)$ đồng thời cắt các tia $Ox$, $Oy$, $Oz$ lần lượt tại $M,\,N,\,P$ sao cho tứ diện $OMNP$ có thể tích nhỏ nhất. Giao điểm của đường thẳng $d\colon\begin{cases} x=2+t\\ y=1-t\\ z=4+t \end{cases}$ với $(P)$ có tọa độ là
$(4;-1;6)$ | |
$(4;6;1)$ | |
$(-4;6;-1)$ | |
$(4;1;6)$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
\(2\) | |
\(-1\) | |
\(-2\) | |
\(1\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng
\(-2\) | |
\(13\) | |
\(-5\) | |
\(12\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là
\(x+5z-18\) | |
\(x+5z=0\) | |
\(3x+4z=0\) | |
\(x+5y=0\) |
Trong không gian \(Oxyz\), cho \(A(1;2;3)\), \(B(-2;4;4)\), \(C(4;0;5)\). Gọi \(G\) là trọng tâm của tam giác \(ABC\). \(M\) là điểm nằm trên mặt phẳng \((Oxy)\) sao cho độ dài đoạn thẳng \(GM\) ngắn nhất. Tính độ dài đoạn thẳng \(GM\).
\(GM=4\) | |
\(GM=\sqrt{5}\) | |
\(GM=1\) | |
\(GM=\sqrt{2}\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).
\(\dfrac{3\sqrt{3}}{2}\) | |
\(\dfrac{3\sqrt{2}}{3}\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{2}{3}\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-2)^2+(y-3)^2+(z-5)^2=100\) và điểm \(M(-3;3;-3)\) nằm trên mặt phẳng \((\alpha)\colon2x-2y+z+15=0\). Đường thẳng \(\Delta\) nằm trên mặt phẳng \((\alpha)\), đi qua \(M\) và cắt mặt cầu \((S)\) tại hai điểm \(A,\,B\) sao cho đoạn thẳng \(AB\) có độ dài lớn nhất. Viết phương trình đường thẳng \(\Delta\).
\(\dfrac{x+3}{1}=\dfrac{y-3}{1}=\dfrac{z+3}{3}\) | |
\(\dfrac{x+3}{16}=\dfrac{y-3}{11}=\dfrac{z+3}{-10}\) | |
\(\dfrac{x+3}{5}=\dfrac{y-3}{1}=\dfrac{z+3}{8}\) | |
\(\dfrac{x+3}{1}=\dfrac{y-3}{4}=\dfrac{z+3}{6}\) |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.
$3$ | |
$1$ | |
$2$ | |
$0$ |
Trong không gian $Oxyz$, cho $M(1;2;1)$. Viết phương trình mặt phẳng $(P)$ qua $M$ cắt các trục $Ox$, $Oy$, $Oz$ lần lượt tại $A,\,B,\,C$ sao cho $\dfrac{1}{OA^2}+\dfrac{1}{OB^2}+\dfrac{1}{OC^2}$ đạt giá trị nhỏ nhất.
$(P)\colon\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{1}=1$ | |
$(P)\colon x+y+z-4=0$ | |
$(P)\colon x+2y+3z-8=0$ | |
$(P)\colon x+2y+z-6=0$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+(z-3)^2=8$ và hai điểm $A(4;4;3)$, $B(1;1;1)$. Gọi $\big(\mathscr{C}_1\big)$ là tập hợp các điểm $M\in(S)$ sao cho $|MA-2MB|$ đạt giá trị nhỏ nhất. Biết rằng $\big(\mathscr{C}_1\big)$ là một đường tròn có bán kính $R_1$. Tính $R_1$.
$\sqrt{7}$ | |
$\sqrt{6}$ | |
$2\sqrt{2}$ | |
$\sqrt{3}$ |
Trong không gian $Oxyz$, Cho hai điểm $A(1;-3;-4)$ và $B(-2;1;2)$. Xét hai điểm $M$ và $N$ thay đổi thuộc mặt phẳng $(Oxy)$ sao cho $MN=2$. Giá trị lớn nhất của $|AM-BN|$ bằng
$3\sqrt{5}$ | |
$\sqrt{61}$ | |
$\sqrt{13}$ | |
$\sqrt{53}$ |
Trong không gian $Oxyz$, hình chiếu vuông góc của điểm $A\left(2;-3;5\right)$ trên trục $Oy$ có tọa độ là
$\left(0;-3;0\right)$ | |
$\left(0;0;5\right)$ | |
$\left(2;0;0\right)$ | |
$\left(-3;0;0\right)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon4x-3y-1=0$ và hai điểm $A(3;-3;-1)$, $B(9;5;-1)$. Gọi $M$ là điểm thay đổi nằm trên mặt phẳng $(P)$ sao cho tam giác $ABM$ vuông tại $M$. Gọi $S_1,\,S_2$ tương ứng là giá trị nhỏ nhất và giá trị lớn nhất của diện tích tam giác $MAB$. Tính giá trị biểu thức $T=S_2-S_1$.
$T=5$ | |
$T=45$ | |
$T=1$ | |
$T=10$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;0)$, $B(0;2;1)$, $C(1;3;-1)$. Điểm $M(a;b;c)\in(Oxy)$ sao cho $\big|2\overrightarrow{MA}+3\overrightarrow{MB}-4\overrightarrow{MC}\big|$ đạt giá trị nhỏ nhất. Mệnh đề nào sau đây đúng?
$a+b+c=3$ | |
$a+b+c=-3$ | |
$a+b+c=-4$ | |
$a+b+c=10$ |
Trong không gian $Oxyz$, cho tứ diện $ABCD$ có $A(2;0;0)$, $B(-2;3;0)$, $C(2;3;0)$. $D$ nằm trên trục $Oz$ sao cho có thể tích khối tứ diện $ABCD$ bằng $128$. Tính tổng cao độ các vị trí điểm $D$.
$32$ | |
$128$ | |
$0$ | |
$64$ |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
$cd=3$ | |
$cd=0$ | |
$cd=12$ | |
$cd=6$ |