Trong không gian, cho tứ diện $ABCD$ có trọng tâm $S$. Gọi $G$ là trọng tâm tam giác $BCD$, $M$ và $N$ lần lượt là trung điểm của $AB$, $CD$. Mệnh đề nào sau đây là sai?
$S$ là trung điểm đoạn $MN$ | |
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ | |
$S$ nằm trên đoạn $AG$ sao cho $SA=3SG$ | |
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}+\overrightarrow{SD}=\overrightarrow{0}$ |
Cho tứ diện $ABCD$ có $G$ là trọng tâm tam giác $BCD$. Mệnh đề nào sau đây không đúng?
$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=3\overrightarrow{AG}$ | |
$\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}$ | |
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$ | |
$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}-3\overrightarrow{AG}=\overrightarrow{0}$ |
Trong không gian, cho tứ diện $ABCD$ có $M,\,N$ lần lượt là trung điểm của $AB,\,CD$. Chọn mệnh đề sai trong các mệnh đề sau:
$\overrightarrow{MA}+\overrightarrow{MB}=\overrightarrow{0}$ | |
$\overrightarrow{NC}+\overrightarrow{NC}=\overrightarrow{0}$ | |
$\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CM}$ | |
$\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AM}$ |
Trong không gian, điểm $S$ là trọng tâm của tam giác $ABC$ nếu
$\overrightarrow{SA}+\overrightarrow{SB}+\overrightarrow{SC}=\overrightarrow{0}$ | |
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{SC}$ | |
$\overrightarrow{SA}+\overrightarrow{SB}=\overrightarrow{0}$ | |
$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AS}$ |
Cho hình chóp $S.ABC$ có tam giác $ABC$ vuông cân tại $A$, $AB=AC=a$ và $SA=SB=SC=a$. Tính $\overrightarrow{AB}\cdot\overrightarrow{SC}$.
$\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2}{2}$ | |
$\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2}{2}$ | |
$\overrightarrow{AB}\cdot\overrightarrow{SC}=\dfrac{a^2\sqrt{3}}{2}$ | |
$\overrightarrow{AB}\cdot\overrightarrow{SC}=-\dfrac{a^2\sqrt{3}}{2}$ |
Cho hình hộp $ABCD.A'B'C'D'$ (tham khảo hình vẽ).
Khẳng định nào sau đây là đúng?
$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BA'}$ | |
$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{B'D}$ | |
$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BD'}$ | |
$\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB'}=\overrightarrow{BC'}$ |
Biết \(G\) là trọng tâm tam giác \(ABC\). Mệnh đề nào sau đây đúng?
\(\overrightarrow{AG}+\overrightarrow{BG}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{CG}\) | |
\(\overrightarrow{GA}-\overrightarrow{GB}=\overrightarrow{GC}\) |
Cho tam giác \(ABC\) có trọng tâm \(G\), \(M\) là trung điểm cạnh \(BC\). Mệnh đề nào sau đây sai?
\(\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\) | |
\(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AM}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=-3\overrightarrow{MG}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm. Mệnh đề nào sau đây sai?
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\) | |
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\vec{0}\) | |
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) | |
\(3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) |
Cho tam giác \(ABC\) có \(G\) là trọng tâm và \(I\) là trung điểm cạnh \(BC\). Đẳng thức nào sau đây đúng?
\(\overrightarrow{GA}=2\overrightarrow{GI}\) | |
\(\overrightarrow{IG}=-\dfrac{1}{3}\overrightarrow{IA}\) | |
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GI}\) | |
\(\overrightarrow{GB}+\overrightarrow{GC}=2\overrightarrow{GA}\) |
Cho tam giác \(ABC\) có \(M\) là điểm thỏa mãn \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\vec{0}\). Xác định vị trí điểm \(M\).
\(M\) là điểm thứ tư của hình bình hành \(ACBM\) | |
\(M\) là trung điểm của đoạn thẳng \(AB\) | |
\(M\equiv C\) | |
\(M\) là trọng tâm tam giác \(ABC\) |
Cho tứ diện $ABCD$. Gọi $G$ là trọng tâm của tam giác $BCD$. Giao tuyến của hai mặt phẳng $(ACD)$ và $(GAB)$ là
$AM$ ($M$ là trung điểm của $AB$) | |
$AN$ ($N$ là trung điểm của $CD$) | |
$AH$ ($H$ là hình chiếu của $B$ trên $CD$) | |
$AK$ ($K$ là hình chiếu của $C$ trên $BD$) |
Cho hình lập phương $ABCD.A'B'C'D'$. Tính góc giữa 2 vectơ $\overrightarrow{AB},\,\overrightarrow{A'C'}$.
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=45^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=60^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=30^\circ$ | |
$\big(\overrightarrow{AB},\overrightarrow{A'C'}\big)=90^\circ$ |
Cho 2 vectơ $\overrightarrow{u}=\overrightarrow{AB}$, $\overrightarrow{v}=\overrightarrow{AC}$. Khi đó $\big(\overrightarrow{u},\overrightarrow{v}\big)$ bằng
$\widehat{ABC}$ | |
$90^\circ$ | |
$\widehat{ACB}$ | |
$\widehat{BAC}$ |
Cho 2 vectơ $\overrightarrow{u},\,\overrightarrow{v}$ có $\big|\overrightarrow{u}\big|=2$, $\big|\overrightarrow{v}\big|=5$ và $\big(\overrightarrow{u},\overrightarrow{v}\big)=30^\circ$. Tính $\overrightarrow{u}\cdot\overrightarrow{v}$.
$\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{2}$ | |
$\overrightarrow{u}\cdot\overrightarrow{v}=5$ | |
$\overrightarrow{u}\cdot\overrightarrow{v}=10$ | |
$\overrightarrow{u}\cdot\overrightarrow{v}=5\sqrt{3}$ |
Cho hình hộp $ABCD.A'B'C'D'$. Chọn khẳng định đúng.
$\overrightarrow{BD}-\overrightarrow{D'D}-\overrightarrow{B'D'}=\overrightarrow{BB'}$ | |
$\overrightarrow{BD}-\overrightarrow{D'D}-\overrightarrow{B'D'}=\overrightarrow{AC'}$ | |
$\overrightarrow{BD}-\overrightarrow{D'D}-\overrightarrow{B'D'}=\overrightarrow{CD}$ | |
$\overrightarrow{BD}-\overrightarrow{D'D}-\overrightarrow{B'D'}=\overrightarrow{AC}$ |
Cho hình lăng trụ $ABC.A'B'C'$. Chọn khẳng định đúng.
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AB}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AC'}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AB'}$ | |
$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{AA'}=\overrightarrow{AC}$ |
Trong mặt phẳng \(Oxy\), cho bốn điểm \(A(1;1)\), \(B(2;-1)\), \(C(4;3)\), \(D(3;5)\). Khẳng định nào sau đây đúng?
Tứ giác \(ABCD\) là hình bình hành | |
\(G(9;7)\) là trọng tâm tam giác \(BCD\) | |
\(\overrightarrow{AB}=\overrightarrow{CD}\) | |
\(\overrightarrow{AC},\,\overrightarrow{AD}\) cùng phương |
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(P(4;5)\) và \(S(3;-1)\). Tìm tọa độ điểm \(H\) thỏa mãn $$\overrightarrow{OH}=2\overrightarrow{OP}-3\overrightarrow{OS}.$$
\(H(-1;13)\) | |
\(H(-1;7)\) | |
\(H(-6;-17)\) | |
\(H(1;-13)\) |
Cho tam giác \(ABC\) và điểm \(M\) thỏa mãn \(\overrightarrow{MA}=\overrightarrow{MB}+\overrightarrow{MC}\). Khẳng định nào sau đây đúng?
\(A,\,B,\,C\) thẳng hàng | |
\(AM\) là phân giác trong của góc \(\widehat{BAC}\) | |
\(A,\,M\) và trọng tâm tam giác \(ABC\) thẳng hàng | |
\(\overrightarrow{AM}+\overrightarrow{BC}=\vec{0}\) |