Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
![]() | $AB$ |
![]() | $BC$ |
![]() | $SB$ |
![]() | $AC$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SCA}$ |
![]() | $\widehat{SCB}$ |
![]() | $\widehat{SAC}$ |
![]() | $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SBA}$ |
![]() | $\widehat{SBC}$ |
![]() | $\widehat{SAB}$ |
![]() | $\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
![]() | $90^\circ$ |
![]() | $0^\circ$ |
![]() | $180^\circ$ |
![]() | $90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
![]() | $SB\perp BC$ |
![]() | $SA\perp AB$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp BC$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
![]() | $AB\perp BC$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp(ABC)$ |
![]() | $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
![]() | $SI$ |
![]() | $SA$ |
![]() | $SB$ |
![]() | $SC$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là
![]() | $CB$ |
![]() | $DB$ |
![]() | $AB$ |
![]() | $SA$ |
Cho tứ diện \(ABCD\). Gọi \(M,\,N\) lần lượt là trung điểm của các cạnh \(AD\) và \(BC\); \(G\) là trọng tâm tam giác \(BCD\).
Khi ấy giao điểm của đường thẳng \(MG\) và mặt phẳng \((ABC)\) là
![]() | Điểm \(C\) |
![]() | Điểm \(N\) |
![]() | Giao điểm của đường thẳng \(MG\) và đường thẳng \(BC\) |
![]() | Giao điểm của đường thẳng \(MG\) và đường thẳng \(AN\) |
Biết rằng $b,\,c$ là hai đường thẳng cắt nhau và cùng nằm trong mặt phẳng $(\alpha)$. Nếu đường thẳng $a$ vuông góc với cả $b$ và $c$ thì
![]() | $a\perp(\alpha)$ |
![]() | $a\parallel(\alpha)$ |
![]() | $a\subset(\alpha)$ |
![]() | $a,\,b,\,c$ đồng quy |
Biết rằng đường thẳng $a$ vuông góc với mặt phẳng $(\alpha)$ và đường thẳng $b$ nằm trên mặt phẳng $(\alpha)$. Kết luận nào sau đây là đúng?
![]() | $a\perp b$ |
![]() | $a\parallel b$ |
![]() | $a,\,b$ chéo nhau |
![]() | $a,\,b$ cắt nhau |
Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).
Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng
![]() | $60^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $90^{\circ}$ |
![]() | $45^{\circ}$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
![]() | $BC\perp(SAB)$ |
![]() | $BC\perp(SBD)$ |
![]() | $BC\perp(SCD)$ |
![]() | $BC\perp(SAC)$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, $SA\perp(ABC)$ và $SA=a$.
Góc giữa $SB$ và $AB$ bằng
![]() | $60^{\circ}$ |
![]() | $90^{\circ}$ |
![]() | $135^{\circ}$ |
![]() | $45^{\circ}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
![]() | $\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ |
![]() | $\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ |
![]() | $\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y+5}{-1}=\dfrac{z-3}{4}\). Phương trình nào dưới đây là hình chiếu vuông góc của đường thẳng \(d\) trên mặt phẳng \((P)\colon x+3=0\)?
![]() | \(\begin{cases}x=-3\\ y=-5-t\\ z=-3+4t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-5+t\\ z=3+4t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-5+2t\\ z=3-t\end{cases}\) |
![]() | \(\begin{cases}x=-3\\ y=-6-t\\ z=7+4t\end{cases}\) |
Cho hình chóp $S.ABC$ có $SA$ vuông góc với mặt phẳng $(ABC)$, $SA=2a$, tam giác $ABC$ vuông tại $B$, $AB=a\sqrt{3}$ và $BC=a$. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ bằng
![]() | $90^{\circ}$ |
![]() | $30^{\circ}$ |
![]() | $45^{\circ}$ |
![]() | $60^{\circ}$ |