Cho \(d\colon2x+y-3=0\). Phép vị tự tâm \(O\) tỉ số \(2\) biến đường thẳng \(d\) thành
\(2x+y+3=0\) | |
\(4x+2y-3=0\) | |
\(2x+y-6=0\) | |
\(4x+2y-5=0\) |
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\colon2x+5y-1=0\). Ảnh của \(d\) qua phép vị tự tâm \(O\) tỉ số \(k=-2\) là đường thẳng có phương trình
\(5x+2y-2=0\) | |
\(-2x+5y+1=0\) | |
\(-2x-5y+3=0\) | |
\(2x+5y+2=0\) |
Trong mặt phẳng \(Oxy\), cho đường thẳng \(d\colon3x+y-3=0\). Lập phương trình đường thẳng \(d'\) là ảnh của \(d\) qua phép vị tự \(V_{(O,-2)}\).
\(3x+y+3=0\) | |
\(3x+y+6=0\) | |
\(3x+y-6=0\) | |
\(3x+y-3=0\) |
Trong mặt phẳng \(Oxy\) cho đường thẳng \(d\colon2x+y-3=0\). Phép vị tự tâm \(O\) tỉ số \(k=2\) biến \(d\) thành đường thẳng có phương trình
\(2x+y+3=0\) | |
\(2x+y-6=0\) | |
\(4x-2y-3=0\) | |
\(4x+2y-5=0\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+4x-2y-8=0\), biết tiếp tuyến vuông góc với đường thẳng \(d\colon2x-3y+2018=0\).
\(3x+2y-17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y+9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y-17=0\) hoặc \(3x+2y+9=0\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y-1\right)^2=25\), biết tiếp tuyến song song với đường thẳng \(d\colon4x+3y+14=0\).
\(4x+3y+14=0\) hoặc \(4x+3y-36=0\) | |
\(4x+3y+14=0\) | |
\(4x+3y-36=0\) | |
\(4x+3y-14=0\) hoặc \(4x+3y-36=0\) |
Đường tròn \(\left(\mathscr{C}\right)\) đi qua hai điểm \(A\left(-1;2\right)\), \(B\left(-2;3\right)\) và có tâm \(I\) thuộc đường thẳng \(\Delta\colon3x-y+10=0\). Phương trình của đường tròn \(\left(\mathscr{C}\right)\) là
\(\left(x+3\right)^2+\left(y-1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=\sqrt{5}\) | |
\(\left(x-3\right)^2+\left(y+1\right)^2=5\) | |
\(\left(x+3\right)^2+\left(y-1\right)^2=5\) |
Đường thẳng đi qua điểm \(D(3;5)\) và có vectơ chỉ phương \(\vec{u}=(4;-1)\) thì phương trình tổng quát là
\(\begin{cases}x=3+4t\\ y=5-t\end{cases}\) | |
\(3x+5y-23=0\) | |
\(x+4y-23=0\) | |
\(4x-y-7=0\) |
Đường thẳng \(\Delta\colon3x+4y-2=0\) đi qua điểm nào dưới đây?
\(N(1;-2)\) | |
\(M(2;-1)\) | |
\(P(2;1)\) | |
\(Q(1;2)\) |
Đường thẳng \(n\colon\begin{cases}
x=3-4t \\
y=-1+4t \\
\end{cases}\) có phương trình tổng quát là
\(x+y-2=0\) | |
\(x-y=4\) | |
\(x-y+2=0\) | |
\(4x+4y-16=0\) |
Cặp đường thẳng nào sau đây cắt nhau tại một điểm?
\(d_1\colon y=3x-5\) và \(d_2\colon y=3x+1\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon4x+6y+1=0\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon4x+6y-8=0\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon6x-4y+3=0\) |
Đường thẳng \(\Delta\colon 5x-3y+1=0\) có vectơ pháp tuyến là
\(\vec{b}=(3;5)\) | |
\(\vec{c}=(-3;-5)\) | |
\(\vec{a}=(5;-3)\) | |
\(\vec{d}=(5;3)\) |
Với giá trị nào của \(m\) thì hai đường thẳng \(\Delta_1\colon mx+y-19=0\) và \(\Delta_2\colon(m-1)x+(m+1)y-20=0\) vuông góc?
\(m\in\Bbb{R}\) | |
\(m=2\) | |
\(m\in\varnothing\) | |
\(m=\pm1\) |
Tìm các giá trị của \(m\) để hai đường thẳng \(d_1\colon\begin{cases}x=2+2t\\ y=1+mt\end{cases}\) và \(d_2\colon4x-3y+m=0\) trùng nhau?
\(m=-3\) | |
\(m=1\) | |
\(m=\dfrac{4}{3}\) | |
\(m\in\varnothing\) |
Tìm \(m\) để hai đường thẳng \(d_1\colon2x-3y+4=0\) và \(d_2\colon\begin{cases}x=2-3t\\ y=1-4mt\end{cases}\) cắt nhau.
\(m\neq-\dfrac{1}{2}\) | |
\(m\neq2\) | |
\(m\neq\dfrac{1}{2}\) | |
\(m=\dfrac{1}{2}\) |
Với giá trị nào của \(m\) thì hai đường thẳng \(d_1\colon3x+4y+10=0\) và \(d_2\colon(2m-1)x+m^2y+10=0\) trùng nhau?
\(m=\pm2\) | |
\(m=\pm1\) | |
\(m=2\) | |
\(m=-2\) |
Đường thẳng nào sau đây không có điểm chung với đường thẳng \(\delta\colon x-3y+4=0\)?
\(\gamma\colon\begin{cases}x=1+t\\ y=2+3t\end{cases}\) | |
\(\omega\colon\begin{cases}x=1-t\\ y=2+3t\end{cases}\) | |
\(\lambda\colon\begin{cases}x=1-3t\\ y=2+t\end{cases}\) | |
\(\varphi\colon\begin{cases}x=1-3t\\ y=2-t\end{cases}\) |
Đường thẳng nào sau đây song song với đường thẳng \(\Delta\colon2x+3y-1=0\)?
\(\lambda\colon2x+3y+1=0\) | |
\(\omega\colon x-2y+5=0\) | |
\(\gamma\colon2x-3y+3=0\) | |
\(\varphi\colon4x+6y-2=0\) |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon5x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-5t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon3x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-3t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |