Cho hai hàm số $u=u(x)$, $v=v(x)$ có đạo hàm liên tục. Khi đó, $\displaystyle\displaystyle\int u\mathrm{d}v$ bằng
$uv-\displaystyle\displaystyle\int v\mathrm{d}u$ | |
$uv+\displaystyle\displaystyle\int v\mathrm{d}u$ | |
$-uv-\displaystyle\displaystyle\int v\mathrm{d}u$ | |
$-uv+\displaystyle\displaystyle\int v\mathrm{d}u$ |
Khẳng định nào sau đây sai?
$\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=-\cos x+C$ | |
$\displaystyle\displaystyle\int a^x\mathrm{\,d}x=a^x\ln{a}+C,\,\left(a>0,\,a\ne1\right)$ | |
$\displaystyle\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan{x}+C$ | |
$\displaystyle\displaystyle\int\dfrac{1}{x}\mathrm{\,d}x=\ln\left|x\right|+C$ |
Cho hàm số $f(x)=\dfrac{1}{\cos^2x}$. Trong các khẳng định sau, khẳng định nào đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\tan x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cot x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cot x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\tan x+C$ |
Cho biết $F(x)$ là một nguyên hàm của hàm số $f(x)$. Biểu thức $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$ bằng
$F(x)$ | |
$F(x)+C$ | |
$F'(x)+C$ | |
$xF(x)+C$ |
Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là
$-\cos x+C$ | |
$\cos x+C$ | |
$\dfrac{1}{2}\cos2x+C$ | |
$-\cos2x+C$ |
Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên $K$ (với $K$ là khoảng hoặc đoạn hoặc nửa khoảng của $\mathbb{R}$). Mệnh đề nào sau đây sai?
$\displaystyle\displaystyle\int\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\left[f(x)\cdot g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x\cdot\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int kf(x)\mathrm{\,d}x=k\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$, với $k$ là hằng số khác $0$ | |
$\displaystyle\displaystyle\int\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ |
Hàm số $F(x)$ là một nguyên hàm của hàm số $f(x)$ trên khoảng $K$ nếu
$F'(x)=f(x)$ | |
$F(x)=f'(x)$ | |
$F''(x)=f(x)$ | |
$F(x)=f''(x)$ |
Tìm nguyên hàm của hàm số \(f(x)=x+\dfrac{1}{x}\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+\dfrac{1}{2}x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+\dfrac{1}{2}x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+x^2+C\) |
Trong các khẳng định sau, khẳng định nào sai?
\(\displaystyle\int\dfrac{1}{x+1}\mathrm{\,d}x=\ln|x+1|+C\) (\(\forall x\neq-1\)) | |
\(\displaystyle\int\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin2x+C\) | |
\(\displaystyle\int\mathrm{e}^{2x}\mathrm{\,d}x=\dfrac{\mathrm{e}^{2x}}{2}+C\) | |
\(\displaystyle\int2^x\mathrm{\,d}x=2^x\ln2+C\) |
Hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên khoảng \(K\) nếu
\(F'(x)=-f(x),\,\forall x\in K\) | |
\(f'(x)=F(x),\,\forall x\in K\) | |
\(F'(x)=f(x),\,\forall x\in K\) | |
\(f'(x)=-F(x),\,\forall x\in K\) |
Khẳng định nào sau đây là khẳng định sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=-\dfrac{1}{x}+C\) | |
\(\displaystyle\int\dfrac{1}{2\sqrt{x}}\mathrm{\,d}x=\sqrt{x}+C\) | |
\(\displaystyle\int a^x\mathrm{\,d}x=a^x\cdot\ln a+C\) (\(a>0,\,a\neq1\)) |
Cặp số nào sau đây có tính chất "Có một hàm số là nguyên hàm của hàm số còn lại"?
\(\tan x\) và \(\dfrac{1}{\sin^2x^2}\) | |
\(\sin x\) và \(\cos x\) | |
\(\mathrm{e}^x\) và \(\mathrm{e}^{-x}\) | |
\(x^2\) và \(x\) |
Cặp số nào sau đây có tính chất "Có một hàm số là nguyên hàm của hàm số còn lại"?
\(\tan x^2\) và \(\dfrac{1}{\cos^2x^2}\) | |
\(\sin2x\) và \(\sin^2x\) | |
\(\mathrm{e}^x\) và \(\mathrm{e}^{-x}\) | |
\(\sin2x\) và \(\cos^2x\) |
Biết \(\displaystyle\int f(u)\mathrm{\,d}u=F(u)+C\). Mệnh đề nào dưới đây đúng?
\(\displaystyle\int f(2x-1)\mathrm{\,d}x=2F(2x-1)+C\) | |
\(\displaystyle\int f(2x-1)\mathrm{\,d}x=2F(x)-1+C\) | |
\(\displaystyle\int f(2x-1)\mathrm{\,d}x=\dfrac{1}{2}F(2x-1)+C\) | |
\(\displaystyle\int f(2x-1)\mathrm{\,d}x=F(2x-1)+C\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x-C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+3C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\dfrac{1}{\cos^2 x}\mathrm{\,d}x=\tan x-5+C\) |
Trong các khẳng định sau, khẳng định nào sai?
\(\displaystyle\int\mathrm{\,d}x=x+2C\) | |
\(\displaystyle\int x^n\mathrm{\,d}x=\dfrac{x^{n+1}}{n+1}+C\), (\(n\in\mathbb{Z}\)) | |
\(\displaystyle\int0\mathrm{\,d}x=C\) | |
\(\displaystyle\int\mathrm{e}^x \mathrm{\,d}x=\mathrm{e}^x-C\) |
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có đạo hàm là hàm số \(f'(x)\). Mệnh đề nào dưới đây đúng?
\(\displaystyle\int f(x)\mathrm{\,d}x=-f'(x)+C\) | |
\(\displaystyle\int f'(x)\mathrm{\,d}x=-f(x)+C\) | |
\(\displaystyle\int f'(x)\mathrm{\,d}x=f(x)+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=f'(x)+C\) |
Trong các khẳng định sau, khẳng định nào sai?
\(\displaystyle\int\dfrac{\mathrm{\,d}x}{x}=\ln x+C\) | |
\(\displaystyle\int\mathrm{\,d}x=x+C\) | |
\(\displaystyle\int0\mathrm{\,d}x=C\) | |
\(\displaystyle\int\mathrm{e}^x\mathrm{\,d}x=\mathrm{e}^x+C\) |
Cho \(f(x),\,g(x)\) là các hàm số xác định và liên tục trên \(\mathbb{R}\). Trong các mệnh đề sau, mệnh đề nào sai?
\(\displaystyle\int\left[2f(x)+3g(x)\right]\mathrm{\,d}x=2\displaystyle\int f(x)\mathrm{\,d}x+3\displaystyle\int g(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\int g(x)\mathrm{\,d}x\) | |
\(\displaystyle\int\limits{2f(x)\mathrm{\,d}x=2}\displaystyle\int f(x)\mathrm{\,d}x\) | |
\(\displaystyle\int f(x)\cdot g(x)\mathrm{\,d}x=\displaystyle\int f(x)\mathrm{\,d}x \cdot \displaystyle\int g(x)\mathrm{\,d}x\) |
Khẳng định nào sau đây sai?
\(\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan x+C\) | |
\(\displaystyle\int\dfrac{1}{\sin^2x}\mathrm{\,d}x=-\cot x+C\) | |
\(\displaystyle\int\sin x\mathrm{\,d}x=\cos x+C\) | |
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) |