Cho $F(x)=\dfrac{1}{2x^2}$ là một nguyên hàm của hàm số $\dfrac{f(x)}{x}$. Tìm nguyên hàm của hàm số $f'(x)\ln x$.
$\displaystyle\displaystyle\int f'(x)\ln x\mathrm{\,d}x=-\left(\dfrac{\ln x}{x^2}+\dfrac{1}{x^2}\right)+C$ | |
$\displaystyle\displaystyle\int f'(x)\ln x\mathrm{\,d}x=\dfrac{\ln x}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int f'(x)\ln x\mathrm{\,d}x=-\left(\dfrac{\ln x}{x^2}+\dfrac{1}{2x^2}\right)+C$ | |
$\displaystyle\displaystyle\int f'(x)\ln x\mathrm{\,d}x=\dfrac{\ln x}{x^2}+\dfrac{1}{2x^2}+C$ |
Tính $\displaystyle\displaystyle\int x\ln x\mathrm{\,d}x$.
$\dfrac{1}{2}x^2\ln x-\dfrac{1}{2}x+C$ | |
$\dfrac{1}{2}\ln x^2-\dfrac{1}{4}x^2+C$ | |
$\dfrac{1}{2}x^2\ln x-\dfrac{1}{2}x^2+C$ | |
$\dfrac{1}{2}x^2\ln x-\dfrac{1}{4}x^2+C$ |
Cho hàm số $f(x)$ và $g(x)$ cùng liên tục trên $\mathbb{R}$. Khẳng định nào đúng?
$\displaystyle\displaystyle\int\big[f(x)\cdot g(x)\big]\mathrm{\,d}x=\left(\displaystyle\int f(x)\mathrm{\,d}x\right)\cdot\left(\displaystyle\int g(x)\mathrm{\,d}x\right)$ | |
$\displaystyle\displaystyle\int\big(f(x)-g(x)\big)\mathrm{\,d}x=\displaystyle\int g(x)\mathrm{\,d}x-\displaystyle\int f(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\big[f(x)+g(x)\big]\mathrm{\,d}x=\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\int g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\left[\dfrac{f(x)}{g(x)}\right]\mathrm{\,d}x=\dfrac{\displaystyle\int f(x)\mathrm{\,d}x}{\displaystyle\int g(x)\mathrm{\,d}x}$ |
Khẳng định nào sau đây sai?
$\displaystyle\displaystyle\int\sin x\mathrm{\,d}x=-\cos x+C$ | |
$\displaystyle\displaystyle\int a^x\mathrm{\,d}x=a^x\ln{a}+C,\,\left(a>0,\,a\ne1\right)$ | |
$\displaystyle\displaystyle\int\dfrac{1}{\cos^2x}\mathrm{\,d}x=\tan{x}+C$ | |
$\displaystyle\displaystyle\int\dfrac{1}{x}\mathrm{\,d}x=\ln\left|x\right|+C$ |
Cho hàm số $f(x)=\dfrac{1}{\cos^2x}$. Trong các khẳng định sau, khẳng định nào đúng?
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\tan x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\cot x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\cot x+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\tan x+C$ |
Cho biết $F(x)$ là một nguyên hàm của hàm số $f(x)$. Biểu thức $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$ bằng
$F(x)$ | |
$F(x)+C$ | |
$F'(x)+C$ | |
$xF(x)+C$ |
Nguyên hàm $\displaystyle\displaystyle\int\sin x\mathrm{d}x$ là
$-\cos x+C$ | |
$\cos x+C$ | |
$\dfrac{1}{2}\cos2x+C$ | |
$-\cos2x+C$ |
Cho hai hàm số $f(x)$ và $g(x)$ liên tục trên $K$ (với $K$ là khoảng hoặc đoạn hoặc nửa khoảng của $\mathbb{R}$). Mệnh đề nào sau đây sai?
$\displaystyle\displaystyle\int\left[f(x)-g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x-\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int\left[f(x)\cdot g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x\cdot\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ | |
$\displaystyle\displaystyle\int kf(x)\mathrm{\,d}x=k\displaystyle\displaystyle\int f(x)\mathrm{\,d}x$, với $k$ là hằng số khác $0$ | |
$\displaystyle\displaystyle\int\left[f(x)+g(x)\right]\mathrm{\,d}x=\displaystyle\displaystyle\int f(x)\mathrm{\,d}x+\displaystyle\displaystyle\int g(x)\mathrm{\,d}x$ |
Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ |
Hàm số $F(x)$ là một nguyên hàm của hàm số $f(x)$ trên khoảng $K$ nếu
$F'(x)=f(x)$ | |
$F(x)=f'(x)$ | |
$F''(x)=f(x)$ | |
$F(x)=f''(x)$ |
Họ tất cả các nguyên hàm của hàm số $f(x)=x\mathrm{e}^x$ là
$x\mathrm{e}^x+C$ | |
$(x-1)\mathrm{e}^x+C$ | |
$(x+1)\mathrm{e}^x+C$ | |
$\dfrac{x\mathrm{e}^x}{2}+C$ |
Họ nguyên hàm của hàm số $f(x)=3x\left(x-\mathrm{e}^x\right)$ là
$x^3+(3x-1)\mathrm{e}^x+C$ | |
$x^3-3(x-1)\mathrm{e}^x+C$ | |
$x^3+3(x-1)\mathrm{e}^x+C$ | |
$x^3-(3x+1)\mathrm{e}^x+C$ |
Kết quả của $I=\displaystyle\displaystyle\int x\mathrm{e}^x\mathrm{\,d}x$ là
$I=x\mathrm{e}^x-\mathrm{e}^x+C$ | |
$I=\dfrac{x^2}{2}\mathrm{e}^x+C$ | |
$I=\dfrac{x^2}{2}\mathrm{e}^x+\mathrm{e}^x+C$ | |
$I=x\mathrm{e}^x+\mathrm{e}^x+C$ |
Cho hàm số \(f\left(x\right)=\dfrac{x}{\sqrt{x^2+2}}\). Họ tất cả các nguyên hàm của hàm số \(g\left(x\right)=\left(x+1\right)\cdot f'\left(x\right)\) là
\(\dfrac{x^2+2x-2}{2\sqrt{x^2+2}}+C\) | |
\(\dfrac{x-2}{\sqrt{x^2+2}}+C\) | |
\(\dfrac{x^2+x+2}{\sqrt{x^2+2}}+C\) | |
\(\dfrac{x+2}{2\sqrt{x^2+2}}+C\) |
Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).
\(f(1)=8-2\mathrm{e}\) | |
\(f(1)=\mathrm{e}\) | |
\(f(1)=3\) | |
\(f(1)=5-2\mathrm{e}\) |
Họ nguyên hàm của hàm số \(f(x)=x\mathrm{e}^{2x}\) là
\(F(x)=2\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\) | |
\(F(x)=2\mathrm{e}^{2x}(x-2)+C\) | |
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}(x-2)+C\) | |
\(F(x)=\dfrac{1}{2}\mathrm{e}^{2x}\left(x-\dfrac{1}{2}\right)+C\) |
Tìm nguyên hàm của hàm số \(f(x)=x+\dfrac{1}{x}\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+\dfrac{1}{2}x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln|x|+\dfrac{1}{2}x^2+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\ln x+x^2+C\) |
Trong các khẳng định sau, khẳng định nào sai?
\(\displaystyle\int\dfrac{1}{x+1}\mathrm{\,d}x=\ln|x+1|+C\) (\(\forall x\neq-1\)) | |
\(\displaystyle\int\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin2x+C\) | |
\(\displaystyle\int\mathrm{e}^{2x}\mathrm{\,d}x=\dfrac{\mathrm{e}^{2x}}{2}+C\) | |
\(\displaystyle\int2^x\mathrm{\,d}x=2^x\ln2+C\) |
Hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên khoảng \(K\) nếu
\(F'(x)=-f(x),\,\forall x\in K\) | |
\(f'(x)=F(x),\,\forall x\in K\) | |
\(F'(x)=f(x),\,\forall x\in K\) | |
\(f'(x)=-F(x),\,\forall x\in K\) |
Khẳng định nào sau đây là khẳng định sai?
\(\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=-\dfrac{1}{x}+C\) | |
\(\displaystyle\int\dfrac{1}{2\sqrt{x}}\mathrm{\,d}x=\sqrt{x}+C\) | |
\(\displaystyle\int a^x\mathrm{\,d}x=a^x\cdot\ln a+C\) (\(a>0,\,a\neq1\)) |