Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{a}=(2;m;n)$ và $\overrightarrow{b}=(6;-3;4)$ với $m,\,n$ là các tham số thực. Giá trị của $m,\,n$ sao cho hai vectơ $\overrightarrow{a}$ và $\overrightarrow{b}$ cùng phương là
$m=-1$ và $n=\dfrac{4}{3}$ | |
$m=-1$ và $n=\dfrac{3}{4}$ | |
$m=1$ và $n=\dfrac{4}{3}$ | |
$m=-3$ và $n=4$ |
Cho vectơ \(\overrightarrow{a}=\left(1;3;4\right)\), tìm vectơ \(\overrightarrow{b}\) cùng phương với vectơ \(\overrightarrow{a}\).
\(\overrightarrow{b}=\left(-2;6;8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;-8\right)\) | |
\(\overrightarrow{b}=\left(-2;-6;8\right)\) | |
\(\overrightarrow{b}=\left(2;-6;-8\right)\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(-2;0;3)\), \(\vec{b}=(0;4;-1)\) và \(\vec{c}=\left(m-2;m^2;5\right)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.
\(m=-2\) hoặc \(m=-4\) | |
\(m=2\) hoặc \(m=4\) | |
\(m=1\) hoặc \(m=6\) | |
\(m=2\) hoặc \(m=5\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;m;2)\), \(\vec{b}=(m+1;2;1)\) và \(\vec{c}=(0;m-2;2)\). Tìm giá trị của \(m\) để \(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng.
\(m=\dfrac{2}{5}\) | |
\(m=\dfrac{5}{2}\) | |
\(m=-2\) | |
\(m=0\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{u}=(2;-1;1)\), \(\vec{v}=(m;3;-1)\) và \(\vec{w}=(1;2;1)\). Tìm giá trị của \(m\) để \(\vec{u},\,\vec{v},\,\vec{w}\) đồng phẳng.
\(m=-8\) | |
\(m=4\) | |
\(m=-\dfrac{7}{3}\) | |
\(m=-\dfrac{8}{3}\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(3;-1;-2)\), \(\vec{b}=(1;2;m)\) và \(\vec{c}=(5;1;7)\). Tìm giá trị của \(m\) để \(\left[\vec{a},\vec{b}\right]=\vec{c}\).
\(m=-1\) | |
\(m=0\) | |
\(m=1\) | |
\(m=2\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(1;2;-1)\), \(\vec{b}=(3;-1;0)\), \(\vec{c}=(1;-5;2)\). Khẳng định nào sau đây là đúng?
\(\vec{a},\,\vec{b}\) cùng phương | |
\(\vec{a},\,\vec{b},\,\vec{c}\) không đồng phẳng | |
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a},\,\vec{b}\neq\vec{0}\). Đặt \(\vec{c}=\left[\vec{a},\vec{b}\right]\), mệnh đề nào sau đây là đúng?
\(\vec{a},\,\vec{c}\) cùng phương | |
\(\vec{b},\,\vec{c}\) cùng phương | |
\(\vec{c}\) vuông góc với cả \(\vec{a}\) và \(\vec{b}\) | |
\(\vec{a},\,\vec{b},\,\vec{c}\) đồng phẳng |
Trong không gian \(Oxyz\), cho hai vectơ \(\vec{a}=(3;-2;m)\) và \(\vec{b}=(2;m;-1)\). Tìm giá trị của \(m\) để \(\vec{a}\) và \(\vec{b}\) vuông góc với nhau.
\(m=2\) | |
\(m=1\) | |
\(m=-2\) | |
\(m=-1\) |
Trong không gian \(Oxyz\), cho vectơ \(\vec{a}=(2;-2;-4)\), \(\vec{b}=(1;-1;1)\). Mệnh đề nào dưới đây sai?
\(\vec{a}+\vec{b}=(3;-3;-3)\) | |
\(\vec{a}\) và \(\vec{b}\) cùng phương | |
\(\left|\vec{b}\right|=\sqrt{3}\) | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-1;2)\) và hai đường thẳng \(d_1\colon\begin{cases}x=t\\ y=1-t\\ z=-1\end{cases}\), \(d_2\colon\dfrac{x+1}{2}=\dfrac{y-1}{1}=\dfrac{z+2}{1}\). Đường thẳng \(\Delta\) đi qua \(M\) và cắt cả hai đường thẳng \(d_1\), \(d_2\) có vectơ chỉ phương là \(\vec{u}=(1;a;b)\). Tính \(a+b\).
\(a+b=1\) | |
\(a+b=-1\) | |
\(a+b=-2\) | |
\(a+b=2\) |
Trong không gian \(Oxyz\), cho các vectơ \(\vec{a}=(m;1;0)\), \(\vec{b}=(2;m-1;1)\), \(\vec{c}=(1;m+1;1)\). Tìm \(m\) để ba vectơ \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) đồng phẳng.
\(m=\dfrac{3}{2}\) | |
\(m=-2\) | |
\(m=-\dfrac{1}{2}\) | |
\(m=-1\) |
Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{u}=(3;-2)$ và $\overrightarrow{v}=\left(m^2;4\right)$ với $m$ là số thực. Tìm $m$ để $\overrightarrow{u}$ và $\overrightarrow{v}$ cùng phương.
$m=\sqrt{6}$ | |
$m=-6$ | |
Không có giá trị nào của $m$ | |
$m=\pm\sqrt{6}$ |
Trong mặt phẳng $Oxy$, cho các véc-tơ $\overrightarrow{u}=(-2;1)$ và $\overrightarrow{v}=3\overrightarrow{i}-m\overrightarrow{j}$. Tìm $m$ để hai véc-tơ $\overrightarrow{u},\,\overrightarrow{v}$ cùng phương.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{3}{2}$ | |
$m=\dfrac{3}{2}$ |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=2\vec{i}-\vec{j}\) và \(\vec{v}=\vec{i}+m\vec{j}\). Tìm \(m\) để \(\vec{u},\,\vec{v}\) cùng phương.
\(m=-1\) | |
\(m=-\dfrac{1}{2}\) | |
\(m=\dfrac{1}{4}\) | |
\(m=2\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
\(m=-5\) | |
\(m=4\) | |
\(m=0\) | |
\(m=-1\) |
Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là
$(-1;4;-5)$ | |
$(1;-4;5)$ | |
$(3;0;1)$ | |
$(3;0;-1)$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?
$\overrightarrow{n_1}=(2;1;-1)$ | |
$\overrightarrow{n_3}=(1;-1;3)$ | |
$\overrightarrow{n_4}=(2;-1;3)$ | |
$\overrightarrow{n_2}=(2;1;3)$ |