Ngân hàng bài tập

Bài tập tương tự

S

Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng

$\dfrac{\sqrt{3}}{3}a$
$\sqrt{2}a$
$\dfrac{2\sqrt{3}}{3}a$
$\dfrac{\sqrt{2}}{2}a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $BC=2a$ và $AA'=3a$ (tham khảo hình bên).

Khoảng cách giữa hai đường thẳng $BD$ và $A'C'$ bằng

$a$
$a\sqrt{2}$
$2a$
$3a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AC=2$, $AB=\sqrt{3}$ và $AA'=1$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(ABC')$ và $(ABC)$ bằng

$30^\circ$
$45^\circ$
$90^\circ$
$60^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(CC'\) (tham khảo hình vẽ).

Khoảng cách từ \(M\) đến mặt phẳng \(\left(A'BC\right)\) bằng

\(\dfrac{\sqrt{21}a}{14}\)
\(\dfrac{\sqrt{2}a}{2}\)
\(\dfrac{\sqrt{21}a}{7}\)
\(\dfrac{\sqrt{2}a}{4}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng

\(\dfrac{a\sqrt{6}}{4}\)
\(a\sqrt{6}\)
\(\dfrac{a\sqrt{3}}{2}\)
\(\dfrac{a\sqrt{6}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), gọi \(H\) là hình chiếu vuông góc của điểm \(A(2;-1;-1)\) trên mặt phẳng \((\alpha)\colon16x-12y-15z-4=0\). Tính độ dài đoạn thẳng \(AH\).

\(AH=55\)
\(AH=\dfrac{11}{5}\)
\(AH=\dfrac{11}{25}\)
\(AH=\dfrac{22}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng

$\dfrac{3}{2}a^3$
$\dfrac{1}{2}a^3$
$2\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{3}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=1$, $BC=2$, $AA'=2$ (tham khảo hình bên).

Khoảng cách giữa hai đường thẳng $AD'$ và $DC'$ bằng

$\sqrt{2}$
$\dfrac{\sqrt{6}}{2}$
$\dfrac{2\sqrt{5}}{5}$
$\dfrac{\sqrt{6}}{3}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$, $AB=a$. Biết khoảng cách từ $A$ đến mặt phẳng $(A'BC)$ bằng $\dfrac{\sqrt{6}}{3}a$, thể tích khối lăng trụ đã cho bằng

$\dfrac{\sqrt{2}}{6}a^3$
$\dfrac{\sqrt{2}}{2}a^3$
$\sqrt{2}a^3$
$\dfrac{\sqrt{2}}{4}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho lăng trụ đứng $ABC.A'B'C'$ có tất cả các cạnh bằng nhau và bằng $a$ (tham khảo hình bên).

Khoảng cách từ điểm $A$ đến mặt phẳng $(BCC'B')$ bằng

$\dfrac{a\sqrt{3}}{4}$
$a$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$ và $AB=4$ (tham khảo hình bên).

Khoảng cách từ $C$ đến mặt phẳng $\left(ABB'A'\right)$ bằng

$2\sqrt{2}$
$2$
$\sqrt{2}$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hình lăng trụ $ABC.DEF$ có cạnh $AD$ hợp với đáy một góc $60^\circ$ và hình chiếu vuông góc của $D$ trên mặt phẳng $\left(ABC\right)$ trùng với trung điểm $M$ của cạnh $BC$. Biết rằng tam giác $ABC$ vuông cân tại $A$ và $AB=a\sqrt{2}$, tính chiều cao của hình lăng trụ.

$\dfrac{a\sqrt{2}}{2}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$2a\sqrt{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình lăng trụ $ABC.DEF$ có hình chiếu vuông góc của $D$ trên mặt phẳng $(ABC)$ là trung điểm $M$ của $BC$. Phát biểu nào sau đây là đúng?

$ABC.DEF$ là hình lăng trụ đều
Tam giác $AMD$ vuông tại $A$
$AD$ là đường cao của lăng trụ
$MD$ là đường cao của lăng trụ
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng

$\sqrt2a$
$2a$
$a$
$2\sqrt2a$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

\(\dfrac{2a}{3}\)
\(\dfrac{a\sqrt{6}}{3}\)
\(\dfrac{a\sqrt{3}}{3}\)
\(\dfrac{a}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB=2a\), \(AD=DC=CB=a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=3a\) (như hình minh họa trên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng

\(\dfrac{3a}{4}\)
\(\dfrac{3a}{2}\)
\(\dfrac{3\sqrt{13}a}{13}\)
\(\dfrac{6\sqrt{13}a}{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;-2;-2)\) lên các trục tọa độ \(Ox,\,Oy,\,Oz\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\) bằng

\(\dfrac{\sqrt{6}}{3}\)
\(\dfrac{2\sqrt{3}}{3}\)
\(\dfrac{\sqrt{6}}{6}\)
\(\dfrac{\sqrt{3}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón đỉnh $S$, đường cao $SO$, $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ $O$ đến $(SAB)$ bằng $\dfrac{a\sqrt{3}}{3}$ và $\widehat{SAO}=30^{\circ}$, $\widehat{SAB}=60^{\circ}$. Độ dài đường sinh của hình nón theo $a$ bằng

$a\sqrt{2}$
$a\sqrt{3}$
$2a\sqrt{3}$
$a\sqrt{5}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự