Ngân hàng bài tập

Bài tập tương tự

S

Cho khối nón có đỉnh $S$, chiều cao bằng $8$ và thể tích bằng $\dfrac{800\pi}{3}$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=12$, khoảng cách từ tâm của đường tròn đáy đến mặt phẳng $(SAB)$ bằng

$8\sqrt{2}$
$\dfrac{24}{5}$
$4\sqrt{2}$
$\dfrac{5}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối nón đỉnh $S$ có bán kính đáy bằng $2\sqrt{3}a$. Gọi $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho $AB=4a$. Biết khoảng cách từ tâm của đáy đến mặt phẳng $(SAB)$ bằng $2a$, thể tích của khối nón đã cho bằng

$\dfrac{8\sqrt{2}}{3}\pi a^3$
$4\sqrt{6}\pi a^3$
$\dfrac{16\sqrt{3}}{3}\pi a^3$
$8\sqrt{2}\pi a^3$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hình trụ tròn xoay có hai đáy là hai hình tròn $(O,3)$ và $(O',3)$. Biết rằng tồn tại dây cung $AB$ thuộc đường tròn $(O)$ sao cho $\triangle O'AB$ là tam giác đều và mặt phẳng $(O'AB)$ hợp với đáy chứa đường tròn $(O)$ một góc $60^\circ$. Tính diện tích xung quanh $S_{\text{xq}}$ của hình nón có đỉnh $O'$, đáy là hình tròn $(O,3)$.

$S_{\text{xq}}=\dfrac{54\pi\sqrt{7}}{7}$
$S_{\text{xq}}=\dfrac{81\pi\sqrt{7}}{7}$
$S_{\text{xq}}=\dfrac{27\pi\sqrt{7}}{7}$
$S_{\text{xq}}=\dfrac{36\pi\sqrt{7}}{7}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón $S$ có chiều cao bằng $3a$. Mặt phẳng $\left(P\right)$ đi qua $S$ cắt đường tròn đáy tại hai điểm $A$ và $B$ sao cho $AB=6\sqrt{3}a$. Biết khoảng cách từ tâm của đường tròn đáy đến $\left(P\right)$ bằng $\dfrac{3a\sqrt{2}}{2}$. Thể tích $V$ của khối nón bị giới hạn bởi hình nón đã cho bằng

$V=54\pi a^3$
$V=108\pi a^3$
$V=36\pi a^3$
$V=18\pi a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.

$\dfrac{5\sqrt{2}}{2}$
$\dfrac{5}{2}$
$\dfrac{2\sqrt{5}}{3}$
$\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian, cho tam giác $ABC$ vuông tại $A$, $AB=2a$, $AC=3a$. Khi quay tam giác $ABC$ quanh cạnh $AB$ thì đường gấp khúc $ACB$ tạo thành một hình nón. Độ dài đường sinh của hình nón đó là

$a\sqrt{13}$
$a\sqrt{5}$
$2a$
$3a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác $ABC$ vuông tại $B$, có cạnh $AB=4$, $BC=3$. Xoay đường gấp khúc $ABC$ quanh cạnh $AB$, ta được một hình nón có độ dài đường sinh bằng

$4$
$3$
$5$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Xét khối nón $(\mathscr{N})$ có đỉnh và đường tròn đáy cùng nằm trên một mặt cầu bán kính bằng 2. Khi $(\mathscr{N})$ có độ dài đường sinh bằng $2\sqrt{3}$, thể tích của nó bằng

$2\sqrt{3}\pi$
$3\pi$
$6\sqrt{3}\pi$
$\pi$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Một bình đựng nước dạng hình nón (không có nắp đậy), đựng đầy nước. Biết rằng chiều cao của bình gấp $3$ lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài là $\dfrac{16\pi}{9}\text{dm}^3$. Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (hình vẽ).

Tính bán kính đáy $R$ của bình nước.

$R=4$dm
$R=2$dm
$R=3$dm
$R=5$dm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.

$\dfrac{5\sqrt{2}}{2}$
$\dfrac{5}{2}$
$\dfrac{2\sqrt{5}}{3}$
$\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian cho tam giác $ABC$ vuông tại $A$, $AB=2a$, $AC=3a$. Khi quay tam giác $ABC$ quanh cạnh $AB$ thì đường gấp khúc $ACB$ tạo thành một hình nón. Độ dài đường sinh của hình nón đó là

$a\sqrt{13}$
$a\sqrt{5}$
$2a$
$3a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho mặt cầu $\mathscr{S}(O,r)$, biết khoảng cách từ $O$ tới mặt phẳng $(P)$ bằng $\dfrac{r}{3}$. Mặt phẳng $(P)$ cắt mặt cầu theo một đường tròn có bán kính bằng

$\dfrac{2r\sqrt{2}}{3}$
$r\sqrt{3}$
$\dfrac{2r}{3}$
$\dfrac{r\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón có góc ở đỉnh bằng $120^\circ$ và chiều cao bằng $4$. Gọi $(S)$ là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của $(S)$ bằng

$64\pi$
$256\pi$
$192\pi$
$96\pi$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác $OIM$ vuông tại $I$ có $OI=3$ và $IM=4$. Khi quay tam giác $OIM$ quanh cạnh góc vuông $OI$ thì đường gấp khúc $OIM$ tạo thành hình nón có độ dài đường sinh bằng

$7$
$3$
$5$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng $3$ lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón sao cho đỉnh khối nón nằm trên mặt cầu (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài.

Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh).

$\dfrac{1}{2}$
$\dfrac{2}{3}$
$\dfrac{4}{9}$
$\dfrac{5}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cắt hình nón $(X)$ bởi mặt phẳng đi qua đỉnh và tạo với mặt chứa đáy góc $60^\circ$, ta được thiết diện là tam giác đều cạnh $4a$. Diện tích xung quanh của $(X)$ bằng

$8\sqrt{7}\pi a^2$
$4\sqrt{13}\pi a^2$
$8\sqrt{13}\pi a^2$
$4\sqrt{7}\pi a^2$
1 lời giải Sàng Khôn
Lời giải Tương tự

Trền bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón sao cho đỉnh khối nón nằm trên mặt cầu (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài.

Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình nón có bán kính đáy bằng \(a\), chiều cao \(2a\). Độ dài đường sinh của hình nón bằng

\(a\sqrt{3}\)
\(2a\sqrt{3}\)
\(a\sqrt{5}\)
\(4a\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình nón có diện tích xung quanh bằng \(3\pi a^2\) và bán kính đáy bằng \(a\). Tính tan của góc giữa một đường sinh và mặt đáy của hình nón.

\(8\)
\(2\sqrt{2}\)
\(\dfrac{2\sqrt{2}}{3}\)
\(\dfrac{1}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Bình Định có câu ca dao:

"Cưới nàng đôi nón Gò Găng
Xấp lãnh An Thái một khăn trầu nguồn."

Nói đến câu ca dao này là nói đến một làng nghề truyền thống có hàng trăm năm tuổi của thị xã An Nhơn, tỉnh Bình Định - làng nghề làm nón lá Gò Găng. Nhân kỷ niệm 10 năm được công nhận thị xã, thị xã An Nhơn lên kế hoạch làm các mô hình biểu tượng làng nghề truyền thống trên địa bàn, trong đó có mô hình chiếc nón lá Gò Găng. Chiếc nón có bán kính đáy \(1\) mét và chiều cao \(1,5\) mét, khung thép dùng làm đường tròn đáy và \(10\) đường nối từ đỉnh của nón đến đường tròn đáy có giá thành \(40.000\) đồng/mét, là của cây lá nón Licuala Fatoua Becc dùng để làm mặt nón có giá thành \(20.000\) đồng/mét vuông. Hỏi nếu bỏ qua diện tích các mép nối thì kinh phí để làm chiếc nón biểu tượng này là bao nhiêu?

\(1.085.000\) đồng
\(1.086.000\) đồng
\(834.000\) đồng
\(833.000\) đồng
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự