Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Cho hình trụ có thiết diện qua trục là một hình vuông. Gọi \(S_1\), \(S_2\) lần lượt là diện tích xung quanh và diện tích toàn phần của hình trụ. Tính giá trị của \(\dfrac{S_1}{S_2}\).
\(\dfrac{1}{2}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{4}\) | |
\(\dfrac{4}{5}\) |
Cho một hình trụ có thiết diện qua trục là một hình chữ nhật có diện tích bằng \(18\). Tính diện tích xung quanh của hình trụ đã cho.
\(S_{\text{xq}}=9\) | |
\(S_{\text{xq}}=18\) | |
\(S_{\text{xq}}=9\pi\) | |
\(S_{\text{xq}}=18\pi\) |
Trong không gian $Oxyz$, cho $(S)\colon x^2+y^2+z^2-4x-2y+10z-14=0$. Mặt phẳng $(P)\colon-x+4z+5=0$ cắt mặt cầu $(S)$ theo một đường tròn $(\mathscr{C})$. Tọa độ tâm $H$ của $(\mathscr{C})$ là
$H(1;1;-1)$ | |
$H(-3;1;-2)$ | |
$H(9;1;1)$ | |
$H(-7;1;-3)$ |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-1)^2+(z-1)^2=25\) có tâm \(I\) và mặt phẳng \((P)\colon x+2y+2z+7=0\). Thể tích của khối nón có đỉnh \(I\) và đáy là giao tuyến của mặt cầu \((S)\) và mặt phẳng \((P)\) bằng
\(12\pi\) | |
\(48\pi\) | |
\(36\pi\) | |
\(24\pi\) |
Trong không gian \(Oxyz\), cho điểm \(I(-3;0;1)\). Mặt cầu \((S)\) có tâm \(I\) và cắt mặt phẳng \((P)\colon x-2y-2z-1=0\) theo một thiết diện là hình tròn. Biết rằng diện tích của hình tròn này bằng \(\pi\). Phương trình mặt cầu \((S)\) là
\((x+3)^2+y^2+(z-1)^2=4\) | |
\((x+3)^2+y^2+(z-1)^2=25\) | |
\((x+3)^2+y^2+(z-1)^2=5\) | |
\((x+3)^2+y^2+(z-1)^2=2\) |
Trong không gian $Oxyz$, cho hai điểm $A(2;1;3)$ và $B(6;5;5)$. Xét khối nón $(N)$ có đỉnh $A$, đường tròn đáy nằm trên mặt cầu đường kính $AB$. Khi $(N)$ có thể tích lớn nhất thì mặt phẳng chứa đường tròn đáy của $(N)$ có phương trình dạng $2x+by+cz+d=0$. Giá trị của $b+c+d$ bằng
$-21$ | |
$-12$ | |
$-18$ | |
$-15$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-4=0\) cắt mặt phẳng \(\left(P\right)\colon x+y-z+4=0\) theo giao tuyến là đường tròn \(\left(\mathscr{C}\right)\). Tính diện tích \(S\) của hình tròn \(\left(\mathscr{C}\right)\).
\(S=\dfrac{2\pi\sqrt{78}}{3}\) | |
\(S=2\pi\sqrt{6}\) | |
\(S=6\pi\) | |
\(S=\dfrac{26\pi}{3}\) |
Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
\(\dfrac{7\pi}{4}\) | |
\(\dfrac{15\pi}{4}\) | |
\(\dfrac{9\pi}{4}\) | |
\(\dfrac{11\pi}{4}\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng
\(26\pi\) | |
\(2\pi\) | |
\(52\pi\) | |
\(40\pi\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có đường kính \(AB\), với \(A(6;2;-5)\), \(B(-4;0;7)\). Viết phương trình mặt phẳng \((P)\) tiếp xúc với \((S)\) tại điểm \(A\).
\((P)\colon5x+y-6z+62=0\) | |
\((P)\colon5x+y-6z-62=0\) | |
\((P)\colon5x-y-6z-62=0\) | |
\((P)\colon5x+y+6z+62=0\) |
Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?
$cd=3$ | |
$cd=0$ | |
$cd=12$ | |
$cd=6$ |
Thiết diện qua trục của một hình trụ là một hình vuông có diện tích \(100\). Tính diện tích xung quanh của hình trụ đó.
\(S_{\text{xq}}=100\pi\) | |
\(S_{\text{xq}}=50\pi\) | |
\(S_{\text{xq}}=200\pi\) | |
\(S_{\text{xq}}=500\pi\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-6x+4y-12=0\). Mặt phẳng nào sau đây cắt \((S)\) theo giao tuyến là một đường tròn có bán kính \(r=3\)?
\((\alpha)\colon x+y+z+\sqrt{3}=0\) | |
\((\beta)\colon2x+2y-z+12=0\) | |
\((\gamma)\colon4x-3y-z-4\sqrt{26}=0\) | |
\((\lambda)\colon3x-4y+5z-17+20\sqrt{2}=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x+y-3z+6=0\) và mặt cầu \((S)\colon(x-4)^2+(y+5)^2+(z+2)^2=25\). Biết \((P)\) cắt \((S)\) theo giao tuyến là một đường tròn bán kính \(r\). Chọn phát biểu đúng.
\(r=6\) | |
\(r=5\) | |
\(r=\sqrt{6}\) | |
\(r=\sqrt{5}\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x-2y+2z-2=0\) và điểm \(I(-1;2;-1)\). Viết phương trình mặt cầu \((S)\) tâm \(I\), cắt mặt phẳng \((P)\) theo giao tuyến là một đường tròn có bán kính bằng \(5\).
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=34\) | |
\((S)\colon(x-1)^2+(y+2)^2+(z-1)^2=34\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=16\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=25\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |