Trong không gian $Oxyz$, cho hai điểm $A(5;2;1)$ và $B(1;0;1)$. Phương trình của mặt cầu đường kính $AB$ là
$(x+3)^2+(y+1)^2+(z+1)^2=5$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=20$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=5$ | |
$(x+3)^2+(y+1)^2+(z+1)^2=20$ |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian $Oxyz$, cho mặt cầu $(S)$ có tâm $I(1;-4;0)$ và bán kính bằng $3$. Phương trình của $(S)$ là
$(x+1)^2+(y-4)^2+z^2=9$ | |
$(x-1)^2+(y+4)^2+z^2=9$ | |
$(x-1)^2+(y+4)^2+z^2=3$ | |
$(x+1)^2+(y-4)^2+z^2=3$ |
Trong không gian $Oxyz$, mặt cầu tâm $I\left(2;-1;1\right)$, bán kính $R=2$ có phương trình là
$\left(x+2\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=2$ | |
$\left(x-2\right)^2+\left(y+1\right)^2+\left(z-1\right)^2=2$ | |
$\left(x+2\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=4$ | |
$\left(x-2\right)^2+\left(y+1\right)^2+\left(z-1\right)^2=4$ |
Trong không gian $Oxyz$, cho hai điểm $A(-2;1;0)$, $B(2;-1;2)$. Mặt cầu đường kính $AB$ có phương trình là
$x^2+y^2+(z-2)^2=\sqrt{24}$ | |
$(x+4)^2+(y-2)^2+(z+2)^2=\sqrt{6}$ | |
$(x-4)^2+(y+2)^2+(z-2)^2=24$ | |
$x^2+y^2+(z-1)^2=6$ |
Trong không gian $Oxyz$, cho hai điểm $I(2;0;-2)$ và $A(2;3;2)$. Mặt cầu $(S)$ có tâm $I$ và đi qua điểm $A$ có phương trình
$(x-2)^2+y^2+(z+2)^2=25$ | |
$(x+2)^2+y^2+(z-2)^2=25$ | |
$(x-2)^2+y^2+(z+2)^2=5$ | |
$(x+2)^2+y^2+(z-2)^2=5$ |
Trong không gian $Oxyz$, phương trình mặt cầu $(S)$ có tâm $I(-1;1;-2)$ và bán kính $r=3$ là
$(S)\colon(x+1)^2+(y-1)^2+(z+2)^2=3$ | |
$(S)\colon(x-1)^2+(y+1)^2+(z-2)^2=9$ | |
$(S)\colon(x+1)^2+(y-1)^2+(z+2)^2=9$ | |
$(S)\colon(x-1)^2+(y+1)^2+(z-2)^2=3$ |
Trong không gian $Oxyz$, mặt cầu $\left(S\right)$ có tâm $I\left(1;-3;2\right)$ và đi qua $A\left(5;-1;4\right)$ có phương trình
$\left(x-1\right)^2+\left(y+3\right)^2+\left(z-2\right)^2=\sqrt{24}$ | |
$\left(x+1\right)^2+\left(y-3\right)^2+\left(z+2\right)^2=\sqrt{24}$ | |
$\left(x+1\right)^2+\left(y-3\right)^2+\left(z+2\right)^2=24$ | |
$\left(x-1\right)^2+\left(y+3\right)^2+\left(z-2\right)^2=24$ |
Trong không gian $Oxyz$, phương trình mặt cầu tâm $I\left(1;2; 3\right)$ và bán kính $R=3$ là
$x^2+y^2+z^2+2x+4y+6z+5=0$ | |
$\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2=9$ | |
$\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=9$ | |
$\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=3$ |
Trong không gian $Oxyz$, cho hai điểm $A(2;2;-1)$, $B(-4;2;-9)$. Phương trình mặt cầu có đường kính $AB$ là
$(x+3)^2+y^2+(z+4)^2=5$ | |
$(x+1)^2+(y-2)^2+(z+5)^2=25$ | |
$(x+2)^2+(y-4)^2+(z+10)^2=25$ | |
$(x+1)^2+(y-2)^2+(z+5)^2=5$ |
Trong không gian $Oxyz$, cho hai điểm $A(7;-2;2)$ và $B(1;2;4)$. Phương trình nào dưới đây là phương trình mặt cầu đường kính $AB$?
$(x-4)^2+y^2+(z-3)^2=2\sqrt{14}$ | |
$(x-4)^2+y^2+(z-3)^2=14$ | |
$(x-4)^2+y^2+(z-3)^2=56$ | |
$(x-7)^2+(y+2)^2+(z-2)^2=14$ |
Trong không gian $Oxyz$, cho hai điểm $A(4;-2;1)$ và $B(0;-2;-1)$. Phương trình mặt cầu có đường kính $AB$ là
$(x-2)^2+(y+2)^2+z^2=5$ | |
$(x+2)^2+(y-2)^2+z^2=5$ | |
$(x-2)^2+(y+2)^2+z^2=20$ | |
$(x+2)^2+(y-2)^2+z^2=20$ |
Trong không gian $Oxyz$, phương trình mặt cầu tâm $I(-1;0;1)$, bán kính bằng $3$ là
$(x-1)^2+y^2+(z+1)^2=3$ | |
$(x-1)^2+y^2+(z+1)^2=9$ | |
$(x+1)^2+y^2+(z-1)^2=3$ | |
$(x+1)^2+y^2+(z-1)^2=9$ |
Trong không gian $Oxyz$, mặt cầu $(S)$ có tâm $I(-1;2;1)$ và tiếp xúc với mặt phẳng $(P)\colon x-2y-2z-2=0$ có phương trình là
$(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=9$ | |
$(S)\colon(x+1)^2+(y-2)^2+(z-1)^2=3$ | |
$(S)\colon(x+1)^2+(y-2)^2+(z-1)^2=9$ | |
$(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=3$ |
Trong không gian $Oxyz$, mặt cầu có tâm là gốc tọa độ $O$ và đi qua điểm $M(0;0;2)$ có phương trình là
$x^2+y^2+z^2=2$ | |
$x^2+y^2+z^2=4$ | |
$x^2+y^2+(z-2)^2=4$ | |
$x^2+y^2+(z-2)^2=2$ |
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left(1;2;-1\right)\) và cắt mặt phẳng \(\left(P\right)\colon x-2y-2z-8=0\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\) | |
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian tọa độ \(Oxyz\), cho điểm \(A\left(1;-2;3\right)\). Gọi \(\left(S\right)\) là mặt cầu chứa \(A\) có tâm \(I\) thuộc tia \(Ox\) và bán kính bằng \(7\). Phương trình mặt cầu \(\left(S\right)\) là
\(\left(x-7\right)^2+y^2+z^2=49\) | |
\(\left(x+7\right)^2+y^2+z^2=49\) | |
\(\left(x+5\right)^2+y^2+z^2=49\) | |
\(\left(x-3\right)^2+y^2+z^2=49\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon x+y-2z+3=0\) và điểm \(I\left(1;1;0\right)\). Phương trình mặt cầu tâm \(I\) và tiếp xúc với \(\left(P\right)\) là
\(\left(x+1\right)^2+\left(y+1\right)^2+z^2=\dfrac{25}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{\sqrt{6}}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{25}{6}\) |