Hàm số nào dưới đây có đồ thị như đường cong trong hình bên?
$y=x^4-2x^2-1$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^3-3x-1$ | |
$y=x^2+x-1$ |
Đồ thị trong hình vẽ bên là của hàm số
\(y=-x^2+x-4\) | |
\(y=x^4-3x^2-4\) | |
\(y=-x^3+2x^2+4\) | |
\(y=-x^4+3x^2+4\) |
Đường cong trong hình vẽ bên là của hàm số nào sau đây?
\(y=-x^3+x^2-2\) | |
\(y=-x^4+3x^2-2\) | |
\(y=x^4-2x^2-3\) | |
\(y=-x^2+x-1\) |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
$y=-x^3+3x+1$ | |
$y=\dfrac{x-1}{x+1}$ | |
$y=\dfrac{x+1}{x-1}$ | |
$y=x^4-x^2+1$ |
Cho hàm số $y=ax^3-3x^2+b$ ($a\neq0$) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
$a>0,\,b< 0$ | |
$a< 0,\,b>0$ | |
$a>0,\,b>0$ | |
$a< 0,\,b< 0$ |
Đường cong trong hình vẽ sau là đồ thị của hàm số nào dưới đây?
$y=-x^3+3x-2$ | |
$y=x^3-3x+2$ | |
$y=x^4-3x^2-2$ | |
$y=x^4-3x^2+2$ |
Trong các hàm số sau, hàm số nào không có cực trị?
$y=x^2$ | |
$y=\dfrac{x+2}{2x-1}$ | |
$y=x^4+2x^2+2$ | |
$y=-x^3-x^2$ |
Hàm số nào dưới đây có bảng biến thiên như hình vẽ?
$y=x^4-2x^2$ | |
$y=-x^3+3x$ | |
$y=-x^4+2x^2$ | |
$y=x^3-3x$ |
Cho hai hàm số $f(x)=mx^3+nx^2+px-\dfrac{5}{2}$ $(m,\,n,\,p\in\mathbb{R})$ và $g(x)=x^2+2x-1$ có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là $-3$, $-1$, $1$ (tham khảo hình vẽ bên).
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số $f(x)$ và $g(x)$ bằng
$\dfrac{9}{2}$ | |
$\dfrac{18}{5}$ | |
$4$ | |
$5$ |
Bảng biến thiên dưới đây mô tả sự biến thiên của hàm số nào?
$y=2x^2+2x-1$ | |
$y=2x^2+2x+2$ | |
$y=-2x^2-2$ | |
$y=-2x^2-2x+1$ |
Bảng biến thiên dưới đây mô tả sự biến thiên của hàm số nào?
$y=-x^2+4x-9$ | |
$y=x^2-4x-1$ | |
$y=-x^2+4x$ | |
$y=x^2-4x-5$ |
Bảng biến thiên trong hình trên là của hàm số nào sau đây?
\(y=x^3-5x^2+x+6\) | |
\(y=x^3-6x^2+9x-1\) | |
\(y=-x^3+6x^2-9x+7\) | |
\(y=x^4+x^2-3\) |
Cho hàm số bậc bốn \(f\left(x\right)\) có bảng biến thiên như sau:
Số điểm cực trị của hàm số \(g\left(x\right)=x^4\left[f\left(x+1\right)\right]^2\) là
\(11\) | |
\(9\) | |
\(7\) | |
\(5\) |
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình trên?
\(y=x^3-3x^2+1\) | |
\(y=-x^3+3x^2+1\) | |
\(y=-x^4+2x^2+1\) | |
\(y=x^4-2x^2+1\) |
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Số nghiệm thực của phương trình \(f(x)=1\) bằng
\(2\) | |
\(3\) | |
\(1\) | |
\(0\) |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.
Hãy xác định hàm số đó.
$y=-x^4-4x^2+1$ | |
$y=x^3-3x+1$ | |
$y=-x^3+3x-1$ | |
$y=x^3+3x+1$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.
Khẳng định nào sau đây là sai?
Hàm số đồng biến trên $(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)$ | |
Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
$\max\limits_{[-1;3]}f(x)=f(0)$ | |
$\max\limits_{[-1;3]}f(x)=f(3)$ | |
$\max\limits_{[-1;3]}f(x)=f(-1)$ | |
$\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
$0$ | |
$3$ | |
$2$ | |
$1$ |