Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là
$(2;-2)$ | |
$(-2;2)$ | |
$(3;2)$ | |
$\left(\dfrac{3}{2};\dfrac{7}{2}\right)$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
$P(3;-12)$ | |
$Q(3;12)$ | |
$M(14;-5)$ | |
$N(-3;12)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là
$(2;7)$ | |
$(-2;7)$ | |
$(2;-7)$ | |
$(-7;2)$ |
Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
$\left(5;1\right)$ | |
$\left(-1;-5\right)$ | |
$\left(1;5\right)$ | |
$\left(-5;-1\right)$ |
Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.
$Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$ | |
$N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
$P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$ | |
$M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.
$M(-2;11)$ | |
$M(11;2)$ | |
$M(11;-2)$ | |
$M(-2;-11)$ |
Trong mặt phẳng $Oxy$, điểm biểu diễn số phức $z=2-i$ có tọa độ là
$(2;-1)$ | |
$(-2;1)$ | |
$(2;1)$ | |
$(-2;-1)$ |
Cho số phức $z=6+7i$. Số phức liên hợp của $z$ có điểm biểu diễn là điểm nào sau đây?
$N(-6;7)$ | |
$M(6;-7)$ | |
$Q(6;7)$ | |
$P(-6;-7)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z=-1+2i\) là điểm nào dưới đây?
\(Q\left(1;2\right)\) | |
\(P\left(-1;2\right)\) | |
\(N\left(1;-2\right)\) | |
\(M\left(-1;-2\right)\) |
Trong mặt phẳng \(Oxy\), cho các điểm \(A,\,B\) như hình vẽ trên. Trung điểm của đoạn thẳng \(AB\) biểu diễn số phức
\(-\dfrac{1}{2}+2i\) | |
\(2-\dfrac{1}{2}i\) | |
\(-1+2i\) | |
\(2-i\) |
Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z=5-i\).
\(M(5;0)\) | |
\(M(5;-1)\) | |
\(M(0;-5)\) | |
\(M(5;1)\) |
Cho số phức \(z=6+7i\). Điểm \(M\) biểu diễn cho số phức \(\overline{z}\) trên mặt phẳng \(Oxy\) là
\(M(-6;-7)\) | |
\(M(6;-7)\) | |
\(M(6;7i)\) | |
\(M(6;7)\) |
Gọi \(A,\,B\) lần lượt biểu diễn các số phức \(z_1=-2+3\mathrm{i}\) và \(z_2=4-3\mathrm{i}\). Khẳng định nào sau đây đúng?
\(A,\,B\) đối xứng nhau qua gốc tọa độ | |
\(A,\,B\) đối xứng nhau qua trục hoành | |
\(A,\,B\) đối xứng nhau qua trục tung | |
\(A,\,B\) đối xứng nhau qua điểm \(I(1;0)\) |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2+3i$ có tọa độ là
$M(-2;3)$ | |
$M(3;2)$ | |
$M(2;-3)$ | |
$M(2;3)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=7-6i$ có tọa độ là
$(-6;7)$ | |
$(6;7)$ | |
$(7;6)$ | |
$(7;-6)$ |
Trên mặt phẳng tọa độ, điểm $M(-3;4)$ là điểm biểu diễn của số phức nào dưới đây?
$z_2=3+4i$ | |
$z_3=-3+4i$ | |
$z_4=-3-4i$ | |
$z_1=3-4i$ |
Trên mặt phẳng $Oxy$, cho các điểm như hình bên.
Điểm biểu diễn số phức $z=-3+2i$ là
điểm $N$ | |
điểm $Q$ | |
điểm $M$ | |
điểm $P$ |
Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
$M$ | |
$Q$ | |
$P$ | |
$N$ |
Biết $M(1;2)$ là điểm biểu diễn số phức $z$. Mệnh đề nào sau đây đúng?
$z=1-2i$ | |
$z=2+i$ | |
$z=1+2i$ | |
$z=2-i$ |