Gọi $z_1,\,z_2$ là hai trong các số phức thỏa mãn $(z-6)\big(8+\overline{zi}\big)$ là số thực. Biết rằng $\left|z_1-z_2\right|=4$. Tìm giá trị nhỏ nhất $m$ của $\left|z_1+3z_2\right|$.
$m=5-\sqrt{21}$ | |
$m=20-4\sqrt{21}$ | |
$m=4\left(5-\sqrt{22}\right)$ | |
$m=5+\sqrt{22}$ |
Xét các số phức $z$ thỏa mãn điều kiện $\left|\dfrac{-2-3i}{3-2i}z+1\right|=1$. Gọi $m, M$ lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức $P=|z|$. Tính $S=2023-3M+2m$.
$S=2021$ | |
$S=2017$ | |
$S=2019$ | |
$S=2023$ |
Xét số phức $z$ thỏa mãn $|z+3-2i|+|z-3+i|=3\sqrt{5}$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức $P=|z+2|+|z-1-3i|$. Khi đó
$M=\sqrt{26}+2\sqrt{5}$, $m=3\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{26}+2\sqrt{5}$, $m=\sqrt{2}$ | |
$M=\sqrt{17}+\sqrt{5}$, $m=3\sqrt{2}$ |
Biết số phức $z$ thỏa mãn $\big|\overline{z}-3-2i\big|=\sqrt{5}$ và tập hợp các điểm biểu diễn số phức $w=(1-i)z+2$ là một đường tròn. Xác định tâm $I$ và bán kính của đường tròn đó.
$I(-3;-5)$, $R=\sqrt{5}$ | |
$I(3;-5)$, $R=\sqrt{10}$ | |
$I(-3;5)$, $R=\sqrt{10}$ | |
$I(3;5)$, $R=10$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$) tùy ý. Mệnh đề nào sau đây đúng?
Số phức liên hợp của $z$ có mô-đun bằng mô-đun của $iz$ | |
$z^2=|z|^2$ | |
Điểm $M(-a;b)$ là điểm biểu diễn của $\overline{z}$ | |
Mô-đun của $z$ là một số thực dương |
Xét các số phức $z$ thỏa mãn $\big|z^2-3-4i\big|=2|z|$. Gọi $M$ và $m$ lần lượt là giá trị lớn nhất vả giá trị nhỏ nhất của $|z|$. Giá trị của $M^2+m^2$ bằng
$28$ | |
$18+4\sqrt{6}$ | |
$14$ | |
$11+4\sqrt{6}$ |
Tìm phần thực, phần ảo, số phức liên hợp và tính môđun của số phức $$z=\left(2-4i\right)\left(5+2i\right)+\dfrac{4-5i}{2+i}.$$
Cho các số phức $z,\,w$ thỏa mãn $|z|=4$ và $|w|=5$. Khi $|2z+w-9+12i|$ đạt giá trị nhỏ nhất thì $|z-w|$ bằng
$\dfrac{11}{2}$ | |
$\dfrac{\sqrt{13}}{2}$ | |
$2$ | |
$1$ |
Xét các số phức $z$, $w$ thỏa mãn $|z|=1$ và $|w|=2$. Khi $\big|z+i\overline{w}-6-8i\big|$ đạt giá trị nhỏ nhất, $|z-w|$ bằng
$\dfrac{\sqrt{221}}{5}$ | |
$\sqrt{5}$ | |
$3$ | |
$\dfrac{\sqrt{29}}{5}$ |
Cho số phức $z$ có phần thực là số nguyên và $z$ thỏa mãn $|z|-2\overline{z}=-7+3i+z$. Tính môđun của số phức $\omega=1-z$.
$|\omega|=\sqrt{37}$ | |
$|\omega|=3\sqrt{2}$ | |
$|\omega|=7$ | |
$|\omega|=5$ |
Cho số phức $z$ thỏa mãn $\overline{z}=\dfrac{(1-2i)(i-1)}{1+i}$. Tính môđun của số phức $w=iz$.
$3$ | |
$\sqrt{12}$ | |
$\sqrt{5}$ | |
$5$ |
Gọi $S$ là tập hợp tất cả các số phức $z$ để số phức $w=|z|-\dfrac{1}{z-1}$ có phần ảo bằng $\dfrac{1}{4}$. Biết rằng $\left|z_1-z_2\right|=3$ với $z_1,\,z_2\in S$, giá trị nhỏ nhất của $\left|z_1+2z_2\right|$ bằng
$\sqrt{5}-\sqrt{3}$ | |
$3\sqrt{5}-3$ | |
$2\sqrt{5}-2\sqrt{3}$ | |
$3\sqrt{5}-3\sqrt{2}$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Khẳng định nào sau đây đúng?
$\left|\overline{z}\right|=\sqrt{a^2-b^2}$ | |
$|z|=a^2+b^2$ | |
$|z|=\sqrt{a^2-b^2}$ | |
$\left|\overline{z}\right|=\sqrt{a^2+b^2}$ |
Gọi $S$ là tập hợp tất cả các số phức $z$ sao cho số phức $w=\dfrac{1}{|z|-z}$ có phần thực bằng $\dfrac{1}{8}$. Xét các số phức $z_1,\,z_2\in S$ thỏa mãn $\left|z_1-z_2\right|=2$, giá trị lớn nhất của $P=\left|z_1-5i\right|^2-\left|z_2-5i\right|^2$ bằng
$16$ | |
$20$ | |
$10$ | |
$32$ |
Cho số phức $z=a+bi$ với $a,\,b$ là các số thực. Khẳng định nào đúng?
$z+\overline{z}=2bi$ | |
$z-\overline{z}=2a$ | |
$z\cdot\overline{z}=a^2-b^2$ | |
$\left|z\right|=\left|\overline{z}\right|$ |
Xét các số phức $z_1=x-2+(y+2)i$ và $z_2=x+yi$, với $x,\,y\in\mathbb{R}$, biết $\left|z_1\right|=1$. Số phức $z_2$ có môđun lớn nhất có phần ảo là
$-5$ | |
$-\left(2+\dfrac{\sqrt{2}}{2}\right)$ | |
$2-\dfrac{\sqrt{2}}{2}$ | |
$3$ |
Cho số phức $z=a+bi$ ($a,\,b\in\mathbb{R}$). Dưới đây có bao nhiêu mệnh đề đúng?
$4$ | |
$1$ | |
$3$ | |
$2$ |
Xét hai số phức $z_1$, $z_2$ thỏa mãn $\left|z_1\right|=1$, $\left|z_2\right|=2$ và $\left|z_1-z_2\right|=\sqrt{3}$. Giá trị lớn nhất của $\left|3z_1+z_2-5i\right|$ bằng
$5-\sqrt{19}$ | |
$5+\sqrt{19}$ | |
$-5+2\sqrt{19}$ | |
$5+2\sqrt{19}$ |
Cho hai số phức \(z=1+2i\) và \(w=3+i\). Môđun của số phức \(z\cdot\overline{w}\) bằng
\(5\sqrt{2}\) | |
\(\sqrt{26}\) | |
\(26\) | |
\(50\) |
Cho số phức \(z\) thỏa mãn \(|z-1|=|z-i|\). Tìm môđun nhỏ nhất của số phức \(w=2z+2-i\).
\(3\sqrt{2}\) | |
\(\dfrac{3}{2\sqrt{2}}\) | |
\(\dfrac{3\sqrt{2}}{2}\) | |
\(\dfrac{3}{2}\) |