Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
$V=\dfrac{7\sqrt{6}a^3}{72}$ | |
$V=\dfrac{7\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
$V=\dfrac{1}{12}$ | |
$V=\dfrac{1}{3}$ | |
$V=\dfrac{1}{6}$ | |
$V=\dfrac{2}{3}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
$\dfrac{V'}{V}=\dfrac{1}{6}$ | |
$\dfrac{V'}{V}=\dfrac{2}{5}$ | |
$\dfrac{V'}{V}=\dfrac{1}{3}$ | |
$\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
$\dfrac{V'}{V}=\dfrac{1}{6}$ | |
$\dfrac{V'}{V}=\dfrac{2}{5}$ | |
$\dfrac{V'}{V}=\dfrac{1}{3}$ | |
$\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).
Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3}{8}$ | |
$\dfrac{3a^3}{8}$ | |
$\dfrac{\sqrt{3}a^3}{12}$ | |
$\dfrac{a^3}{4}$ |
Cho khối chóp $S.ABCD$ có đáy là hình bình hành và có thể tích $48$. Trên các cạnh $SA,\,SB,\,SC,\,SD$ lần lượt lấy các điểm $A',\,B',\,C'$ và $D'$ sao cho $\dfrac{SA'}{SA}=\dfrac{SC'}{SC}=\dfrac{1}{3}$ và $\dfrac{SB'}{SB}=\dfrac{SD'}{SD}=\dfrac{3}{4}$. Tính thể tích $V$ của khối đa diện lõm $S.A'B'C'D'$.
$V=4$ | |
$V=9$ | |
$V=\dfrac{3}{2}$ | |
$V=6$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{18}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{3}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3\sqrt{3}}{48}$ | |
$\dfrac{a^3\sqrt{3}}{36}$ | |
$\dfrac{a^3\sqrt{3}}{24}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
$\dfrac{a^3\sqrt{7}}{9}$ | |
$\dfrac{a^3\sqrt{7}}{6}$ | |
$\dfrac{a^3\sqrt{7}}{12}$ | |
$\dfrac{a^3\sqrt{7}}{18}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng
$3a^3$ | |
$a^3$ | |
$12\sqrt{2}a^3$ | |
$4\sqrt{2}a^3$ |
Cho hình chóp $S.ABCD$ có chiều cao bằng $8$ và đáy $ABCD$ là hình vuông cạnh bằng $3$. Gọi $M$ là trung điểm của $SB$ và $N$ là điểm thuộc $SD$ sao cho $\overrightarrow{SN}=2\overrightarrow{ND}$. Thể tích khối tứ diện $ACMN$ bằng
$6$ | |
$9$ | |
$4$ | |
$3$ |
Cho khối chóp đều $S.ABCD$ có $AC=4a$, hai mặt phẳng $(SAB)$ và $(SCD)$ vuông góc với nhau. Thể tích của khối chóp đã cho bằng
$\dfrac{16\sqrt{2}}{3}a^3$ | |
$\dfrac{8\sqrt{2}}{3}a^3$ | |
$16a^3$ | |
$\dfrac{16}{3}a^3$ |
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật với \(AB=2a\), \(BC=a\), \(SA\) vuông góc với mặt đáy và cạnh bên \(SC\) hợp với đáy một góc \(30^\circ\). Tính thể tích \(V\) của khối chóp theo \(a\).
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với mặt đáy một góc $60^\circ$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.
$V=\dfrac{a^3\sqrt{6}}{6}$ | |
$V=\dfrac{a^3\sqrt{6}}{2}$ | |
$V=\dfrac{a^3\sqrt{6}}{3}$ | |
$V=\dfrac{a^3}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |