Ngân hàng bài tập

Bài tập tương tự

SS

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?

$29$
$33$
$55$
$28$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng

\(2\)
\(-1\)
\(-2\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là

$1$
$2$
$3$
$4$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là

$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-3)^2+(y-2)^2+(z-6)^2=56$ và đường thẳng $\Delta\colon\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-5}{1}$. Biết rằng đường thẳng $\Delta$ cắt $(S)$ tại điểm $A\left(x_0;y_0;z_0\right)$ với $x_0>0$. Giá trị của $y_0+z_0-2x_0$ bằng

$30$
$-1$
$9$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.

\(M\left(0;0;1\right)\)
\(M\left(2;-4;-1\right)\)
\(M\left(4;0;3\right)\)
\(M\left(0;-1;0\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là

\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\)
\(x^2+y^2+z^2+2y-60=0\)
\(x^2+y^2+z^2-2y+55=0\)
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là

\(x^2+(y+1)^2+(z+2)^2=64\)
\(x^2+(y-1)^2+(z-2)^2=67\)
\(x^2+(y-1)^2+(z+2)^2=3\)
\(x^2+(y+1)^2+(z-2)^2=64\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-2)^2+(y-3)^2+(z-5)^2=100\) và điểm \(M(-3;3;-3)\) nằm trên mặt phẳng \((\alpha)\colon2x-2y+z+15=0\). Đường thẳng \(\Delta\) nằm trên mặt phẳng \((\alpha)\), đi qua \(M\) và cắt mặt cầu \((S)\) tại hai điểm \(A,\,B\) sao cho đoạn thẳng \(AB\) có độ dài lớn nhất. Viết phương trình đường thẳng \(\Delta\).

\(\dfrac{x+3}{1}=\dfrac{y-3}{1}=\dfrac{z+3}{3}\)
\(\dfrac{x+3}{16}=\dfrac{y-3}{11}=\dfrac{z+3}{-10}\)
\(\dfrac{x+3}{5}=\dfrac{y-3}{1}=\dfrac{z+3}{8}\)
\(\dfrac{x+3}{1}=\dfrac{y-3}{4}=\dfrac{z+3}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $A(1;2;-1)$ và mặt phẳng $(P)\colon x+2y+z=0$. Đường thẳng đi qua $A$ và vuông góc với $(P)$ có phương trình là

$\begin{cases}x=1+t\\ y=2-2t\\ z=-1+t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=1-t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=1+t\end{cases}$
$\begin{cases}x=1+t\\ y=2+2t\\ z=-1+t\end{cases}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(3;2;-1)$ và mặt phẳng $(P)\colon x+z-2=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là

$\begin{cases}x=3+t\\ y=2\\ z=-1+t\end{cases}$
$\begin{cases}x=3+t\\ y=2t\\ z=1-t\end{cases}$
$\begin{cases}x=3+t\\ y=1+2t\\ z=-t\end{cases}$
$\begin{cases}x=3+t\\ y=2+t\\ z=-1\end{cases}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.

  1. Viết phương trình mặt cầu $(S)$ tâm $I$, tiếp xúc với mặt phẳng $(P)$.
  2. Tìm tọa độ tiếp điểm của mặt cầu $(S)$ và mặt phẳng $(P)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho ba điểm $A(1;2;-1)$, $B(3;0;1)$ và $C(2;2;-2)$. Đường thẳng đi qua $A$ và vuông góc với mặt phẳng $(ABC)$ có phương trình là

$\dfrac{x-1}{1}=\dfrac{y-2}{-2}=\dfrac{z+1}{3}$
$\dfrac{x+1}{1}=\dfrac{y+2}{2}=\dfrac{z-1}{1}$
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z-1}{-1}$
$\dfrac{x-1}{1}=\dfrac{y-2}{2}=\dfrac{z+1}{1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là

$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là

$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M\left(1;-2;0\right)$ và mặt phẳng $\left(\alpha\right)\colon x+2y-2z+3=0$. Đường thẳng đi qua điểm $M$ và vuông góc với $\left(\alpha\right)$ có phương trình tham số là

$\begin{cases}x=1+t\\ y=2+2t\\ z=-2t\end{cases}$
$\begin{cases}x=1+t\\ y=-2+2t\\ z=2t\end{cases}$
$\begin{cases}x=1-t\\ y=-2-2t\\ z=2t\end{cases}$
$\begin{cases}x=1+t\\ y=2-2t\\ z=-2\end{cases}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(2;-5;3)$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Mặt phẳng đi qua $M$ và vuông góc với $d$ có phương trình là

$2x-5y+3z-38=0$
$2x+4y-z+19=0$
$2x+4y-z-19=0$
$2x+4y-z+11=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là

$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?

$\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$
$\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$
$\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$
$\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $P(3;1;3)$ và đường thẳng $d\colon\dfrac{x-3}{1}=\dfrac{y+4}{3}=\dfrac{z-2}{3}$. Phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm $P$ và vuông góc với đường thẳng $d$?

$x-4y+3z+3=0$
$x+3y+3z-3=0$
$3x+y+3z-15=0$
$x+3y+3z-15=0$
1 lời giải Sàng Khôn
Lời giải Tương tự