Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?
$29$ | |
$33$ | |
$55$ | |
$28$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-2\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=9\) và \(M\left(x_0;y_0;z_0\right)\in\left(S\right)\) sao cho \(A=x_0+2y_0+2z_0\) đạt giá trị nhỏ nhất. Khi đó \(x_0+y_0+z_0\) bằng
\(2\) | |
\(-1\) | |
\(-2\) | |
\(1\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x+y-z-1=0\) và điểm \(A(1;0;0)\in(P)\). Đường thẳng \(\Delta\) đi qua \(A\) nằm trong \((P)\) và tạo với trục \(Oz\) một góc nhỏ nhất. Gọi \(M\left(x_0;y_0;z_0\right)\) là giao điểm của đường thẳng \(\Delta\) với mặt phẳng \((Q)\colon2x+y-2z+1=0\). Tổng \(S=x_0+y_0+z_0\) bằng
\(-2\) | |
\(13\) | |
\(-5\) | |
\(12\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).
\(\dfrac{3\sqrt{3}}{2}\) | |
\(\dfrac{3\sqrt{2}}{3}\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{2}{3}\) |
Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng
\(26\pi\) | |
\(2\pi\) | |
\(52\pi\) | |
\(40\pi\) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
$\dfrac{5\sqrt{2}}{2}$ | |
$\dfrac{5}{2}$ | |
$\dfrac{2\sqrt{5}}{3}$ | |
$\dfrac{5}{3}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?
$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};2\right)$ | |
$\left(7;\dfrac{15}{2}\right)$ | |
$\left(0;\dfrac{1}{4}\right)$ |
Trong không gian $Oxyz$, cho hai điểm $A(5;2;1)$ và $B(1;0;1)$. Phương trình của mặt cầu đường kính $AB$ là
$(x+3)^2+(y+1)^2+(z+1)^2=5$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=20$ | |
$(x-3)^2+(y-1)^2+(z-1)^2=5$ | |
$(x+3)^2+(y+1)^2+(z+1)^2=20$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)$ có tâm $I(1;2;-1)$ và bán kính $R=2$. Phương trình của $(S)$ là
$(x-1)^2+(y-2)^2+(z+1)^2=4$ | |
$(x-1)^2+(y-2)^2+(z+1)^2=2$ | |
$(x+1)^2+(y+2)^2+(z-1)^2=2$ | |
$(x+1)^2+(y+2)^2+(z-1)^2=4$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng
$2\sqrt{2}$ | |
$2+2\sqrt{2}$ | |
$-2\sqrt{2}$ | |
$4+\sqrt{2}$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-3)$, mặt phẳng $(P)\colon3x+y-z-1=0$ và mặt phẳng $(Q)\colon x+3y+z-3=0$. Gọi $(\Delta)$ là đường thẳng đi qua $A$, cắt và vuông góc với giao tuyến của $(P)$ và $(Q)$. Sin của góc tạo bởi đường thẳng $(\Delta)$ và mặt phẳng $(P)$ bằng
$\dfrac{7\sqrt{55}}{55}$ | |
$\dfrac{\sqrt{55}}{55}$ | |
$0$ | |
$\dfrac{-3\sqrt{55}}{11}$ |
Trong không gian $Oxyz$, gọi $\alpha$ là góc giữa hai mặt phẳng $(P)\colon x-\sqrt{3}y+2z+1=0$ và mặt phẳng $(Oxy)$. Khẳng định nào sau đây đúng?
$\alpha=45^{\circ}$ | |
$\alpha=30^{\circ}$ | |
$\alpha=60^{\circ}$ | |
$\alpha=90^{\circ}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+1)^2+(y-3)^2+(z-2)^2=25$. Tâm $I$ và bán kính $R$ của mặt cầu $(S)$ là
$I(-1;3;2),\,R=25$ | |
$I(1;-3;-2),\,R=5$ | |
$I(-1;3;2),\,R=5$ | |
$I(1;-3;-2),\,R=25$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.
$3$ | |
$1$ | |
$2$ | |
$0$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, cho mặt cầu có phương trình $x^2+y^2+z^2-2x+4y-6z+9=0$. Tọa độ tâm $I$ và bán kính $R$ của mặt cầu là
$I(-1;2;-3)$ và $R=5$ | |
$I(-1;2;-3)$ và $R=\sqrt{5}$ | |
$I(1;-2;3)$ và $R=5$ | |
$I(1;-2;3)$ và $R=\sqrt{5}$ |