Ngân hàng bài tập

Bài tập tương tự

C

Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.

Khẳng định nào sau đây đúng?

$\max\limits_{[-1;3]}f(x)=f(0)$
$\max\limits_{[-1;3]}f(x)=f(3)$
$\max\limits_{[-1;3]}f(x)=f(-1)$
$\max\limits_{[-1;3]}f(x)=f(2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:

Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng

$1$
$4$
$0$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$ bằng

$1$
$3$
$-1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng

$2f(0)-1$
$2f(-1)-4$
$2f(1)$
$2f(2)-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng

$f(2)+\dfrac{2}{3}$
$f(-1)+\dfrac{2}{3}$
$\dfrac{2}{3}$
$f(1)-\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm

$x_0=-4$
$x_0=-1$
$x_0=3$
$x_0=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?

$\min\limits_{[-2;2]}h(x)=h(-2)$
$\max\limits_{[0;4]}h(x)=h(0)$
$\min\limits_{[-1;2]}h(x)=h(-1)$
$h(2)< h(4)< h(0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SSS

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình. Gọi \(S\) là tập hợp các số nguyên dương \(m\) để bất phương trình $$f(x)\geq mx^2\left(x^2-2\right)+2m$$có nghiệm thuộc đoạn \([0;3]\). Số phần tử của tập \(S\) là

\(9\)
\(10\)
Vô số
\(0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Hàm số \(y=f(x)\) liên tục trên đoạn \([-1;3]\) và có bảng biến thiên như sau:

Gọi \(M\) là giá trị lớn nhất của hàm số \(y=f(x)\) trên đoạn \([-1;3]\). Khẳng định nào sau đây là khẳng định đúng?

\(M=f(0)\)
\(M=f(3)\)
\(M=f(2)\)
\(M=f(-1)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) liên tục trên đoạn \([-3;2]\) và có bảng biến thiên như sau:

Gọi \(M,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của \(f(x)\) trên đoạn \([-1;2]\). Tính \(M+m\).

\(3\)
\(2\)
\(1\)
\(4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho bảng biến thiên của hàm số \(y=f(x)\) như hình.

Tìm giá trị lớn nhất \(M\) và giá trị nhỏ nhất \(m\) của hàm số trên đoạn \([-2;3]\).

\(\begin{cases}M=3\\ m=-2\end{cases}\)
\(\begin{cases}M=0\\ m=3\end{cases}\)
\(\begin{cases}M=2\\ m=-1\end{cases}\)
\(\begin{cases}M=1\\ m=-1\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) xác định trên đoạn \(\left[-\sqrt{3};\sqrt{5}\right]\) và có bảng biến thiên như hình vẽ. Khẳng định nào sau đây là đúng?

\(\min\limits_{\left[-\sqrt{3};\sqrt{5}\right]}f(x)=0\)
\(\max\limits_{\left[-\sqrt{3};\sqrt{5}\right]}f(x)=2\)
\(\max\limits_{\left[-\sqrt{3};\sqrt{5}\right]}f(x)=2\sqrt{5}\)
\(\min\limits_{\left[-\sqrt{3};\sqrt{5}\right]}f(x)=2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hai cây cột có chiều cao lần lượt là $6$m, $15$m và đặt cách nhau $20$m (như hình minh họa).

Một sợi dây dài được gắn vào đỉnh của mỗi cột và được đóng cọc xuống đất tại một điểm ở giữa hai cột. Chiều dài sợi dây được sử dụng ít nhất là

$30$m
$29$m
$31$m
$28$m
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị của hàm số $y=f(x)$ có dạng như đường cong trong hình vẽ bên.

Gọi $M$ là giá trị lớn nhất, $m$ là giá trị nhỏ nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$. Tính $P=M-2m$.

$P=5$
$P=3$
$P=1$
$P=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:

Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là

$9$
$3$
$7$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.

Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?

$(-2;5)$
$(1;2)$
$(2;5)$
$(5;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.

Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?

$(-4;-2)$
$(2;4)$
$(-2;0)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Số nghiệm thực phân biệt của phương trình $f'\left(f(x)\right)=0$ là

$3$
$4$
$5$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.

Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng

$f(0)$
$f(-3)+6$
$f(2)-4$
$f(4)-8$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số bậc bốn \(f\left(x\right)\) có bảng biến thiên như sau:

Số điểm cực trị của hàm số \(g\left(x\right)=x^4\left[f\left(x+1\right)\right]^2\) là

\(11\)
\(9\)
\(7\)
\(5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự