Một khối trụ có khoảng cách giữa hai đáy, độ dài đường sinh và bán kính đường tròn đáy lần lượt là $h$, $\ell$, $r$. Khi đó công thức tính diện tích toàn phần của khối trụ là
$S_{\text{tp}}=\pi r(\ell+r)$ | |
$S_{\text{tp}}=2\pi r(\ell+r)$ | |
$S_{\text{tp}}=2\pi r(\ell+2r)$ | |
$S_{\text{tp}}=\pi r(2\ell+r)$ |
Cho hình trụ có bán kính đáy và chiều cao đều bằng $a$. Gọi $AB,\,CD$ là các dây cung của hai đường tròn đáy sao cho tứ giác $ABCD$ là hình vuông và mặt phẳng $(ABCD)$ không vuông góc với mặt phẳng đáy. Tính độ dài đoạn thẳng $AB$.
$\dfrac{a\sqrt{5}}{3}$ | |
$\dfrac{a\sqrt{5}}{2}$ | |
$\dfrac{a\sqrt{10}}{2}$ | |
$\dfrac{a\sqrt{10}}{3}$ |
Trong không gian, cho tam giác $ABC$ vuông tại $A$, $AB=2a$, $AC=3a$. Khi quay tam giác $ABC$ quanh cạnh $AB$ thì đường gấp khúc $ACB$ tạo thành một hình nón. Độ dài đường sinh của hình nón đó là
$a\sqrt{13}$ | |
$a\sqrt{5}$ | |
$2a$ | |
$3a$ |
Cho hình trụ có độ dài đường sinh $\ell$ và bán kính đáy $3r$. Diện tích xung quanh của hình trụ bằng
$\pi r\ell$ | |
$4\pi r\ell$ | |
$2\pi r\ell$ | |
$6\pi r\ell$ |
Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có $AB=a$, $AA'=2a$. Một khối trụ có hai đáy là hai đường tròn ngoại tiếp hai tam giác $ABC$, $A'B'C'$. Thể tích của khối trụ đó bằng
$\dfrac{4\pi a^3}{3}$ | |
$\pi a^3$ | |
$\dfrac{2\pi a^3}{3}$ | |
$\dfrac{\pi a^3}{3}$ |
Một vật rắn gồm một nửa hình cầu, một hình trụ và một hình nón có hình dạng và kích thước như hình bên dưới.
Thể tích của vật rắn đã cho bằng
$120\pi\text{ cm}^3$ | |
$144\pi\text{ cm}^3$ | |
$126\pi\text{ cm}^3$ | |
$111\pi\text{ cm}^3$ |
Cho khối trụ có bán kính đáy là $5$ và chiều cao là $3$. Thể tích của khối trụ đã cho bằng
$5\pi$ | |
$75\pi$ | |
$30\pi$ | |
$45\pi$ |
Khi quay hình chữ nhật $ABCD$ xung quanh cạnh $AD$ thì đường gấp khúc $ABCD$ tạo thành một hình trụ. Bán kính hình trụ được tạo thành bằng độ dài đoạn thẳng nào dưới đây?
$AD$ | |
$AC$ | |
$AB$ | |
$BD$ |
Cho hình chữ nhật $ABCD$ có cạnh $AB=4$, $BC=3$. Xoay đường gấp khúc $ABCD$ quanh cạnh $AB$, ta được một hình trụ có đường kính đáy bằng
$4$ | |
$3$ | |
$5$ | |
$6$ |
Cho hình chữ nhật $ABCD$ có cạnh $AB=4$, $BC=3$. Xoay đường gấp khúc $ABCD$ quanh cạnh $AB$, ta được một hình trụ có bán kính đáy bằng
$4$ | |
$3$ | |
$5$ | |
$6$ |
Cho hình chữ nhật $ABCD$ có cạnh $AB=4$, $BC=3$. Xoay đường gấp khúc $ABCD$ quanh cạnh $AB$, ta được một hình trụ có chiều cao bằng
$4$ | |
$3$ | |
$5$ | |
$6$ |
Cho hình chữ nhật $ABCD$. Xoay đường gấp khúc $ABCD$ quanh cạnh $AB$, ta được một
hình nón | |
hình trụ | |
hình cầu | |
hình chóp |
Cho tam giác $ABC$ vuông tại $B$, có cạnh $AB=4$, $BC=3$. Xoay đường gấp khúc $ABC$ quanh cạnh $AB$, ta được một hình nón có độ dài đường sinh bằng
$4$ | |
$3$ | |
$5$ | |
$6$ |
Cho hình trụ có chiều cao $h=3$ và bán kính đáy $r=4$. Diện tích xung quanh của hình trụ đã cho bằng
$48\pi$ | |
$16\pi$ | |
$24\pi$ | |
$56\pi$ |
Cho hình nón đỉnh $S$, đường cao $SO$, $A$ và $B$ là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ $O$ đến $(SAB)$ bằng $\dfrac{a\sqrt{3}}{3}$ và $\widehat{SAO}=30^{\circ}$, $\widehat{SAB}=60^{\circ}$. Độ dài đường sinh của hình nón theo $a$ bằng
$a\sqrt{2}$ | |
$a\sqrt{3}$ | |
$2a\sqrt{3}$ | |
$a\sqrt{5}$ |
Một hình trụ có bán kính đáy bằng $a$, chu vi thiết diện qua trục bằng $10a$. Chiều cao của khối trụ đã cho bằng
$3a$ | |
$a$ | |
$4a$ | |
$9a$ |
Một bình đựng nước dạng hình nón (không có nắp đậy), đựng đầy nước. Biết rằng chiều cao của bình gấp $3$ lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài là $\dfrac{16\pi}{9}\text{dm}^3$. Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (hình vẽ).
Tính bán kính đáy $R$ của bình nước.
$R=4$dm | |
$R=2$dm | |
$R=3$dm | |
$R=5$dm |
Cho hình trụ có bán kính đáy và chiều cao đều bằng $a$. Gọi $AB$, $CD$ là các dây cung của hai đường tròn đáy sao cho tứ giác $ABCD$ là hình vuông và mặt phẳng $ABCD$ không vuông góc với mặt phẳng đáy. Tính độ dài đoạn thẳng $AB$.
$\dfrac{a\sqrt{5}}{3}$ | |
$\dfrac{a\sqrt{5}}{2}$ | |
$\dfrac{a\sqrt{10}}{2}$ | |
$\dfrac{a\sqrt{10}}{3}$ |
Trong không gian cho tam giác $ABC$ vuông tại $A$, $AB=2a$, $AC=3a$. Khi quay tam giác $ABC$ quanh cạnh $AB$ thì đường gấp khúc $ACB$ tạo thành một hình nón. Độ dài đường sinh của hình nón đó là
$a\sqrt{13}$ | |
$a\sqrt{5}$ | |
$2a$ | |
$3a$ |
Cho hình trụ có độ dài đường sinh $\ell$ và bán kính đáy $3r$. Diện tích xung quanh của hình trụ bằng
$\pi r\ell$ | |
$4\pi r\ell$ | |
$2\pi r\ell$ | |
$6\pi r\ell$ |