Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
$5^x< 5^y\Leftrightarrow x>y$ | |
$5^x>5^y\Leftrightarrow x>y$ | |
$5^x>5^y\Leftrightarrow x< y$ | |
$5^x>5^y\Leftrightarrow x=y$ |
Tập nghiệm của bất phương trình $3^x>5$ là
$\big(0;\log_35\big)$ | |
$\big(\log_53;+\infty\big)$ | |
$\big(\log_35;+\infty\big)$ | |
$\big(0;\log_53\big)$ |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
$728$ | |
$726$ | |
$725$ | |
$729$ |
Tập nghiệm của bất phương trình $2^{2x}< 8$ là
$\left(-\infty;\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};+\infty\right)$ | |
$(-\infty;2)$ | |
$\left(0;\dfrac{3}{2}\right)$ |
Tìm số nghiệm nguyên của bất phương trình $2023^{2x^2-4x+9}-2023^{x^2+5x+1}-(x-1)(8-x)< 0$.
$7$ | |
$5$ | |
$6$ | |
$8$ |
Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là
$(4;+\infty)$ | |
$(-\infty;-1)\cup(4;+\infty)$ | |
$(-1;4)$ | |
$(-\infty;-1)$ |
Tập nghiệm của bất phương trình $2^{x+1}< 4$ là
$(-\infty;1]$ | |
$(1;+\infty)$ | |
$[1;+\infty)$ | |
$(-\infty;1)$ |
Cho hai số thực $x,\,y$ bất kì. Khẳng định nào dưới đây đúng?
$5^x< 5^y\Leftrightarrow x>y$ | |
$5^x>5^y\Leftrightarrow x>y$ | |
$5^x>5^y\Leftrightarrow x< y$ | |
$5^x>5^y\Leftrightarrow x=y$ |
Xét tất cả các số thực $x,\,y$ sao cho $a^{4x-\log_5a^2}\leq25^{40-y^2}$ với mọi số thực dương $a$. Giá trị lớn nhất của biểu thức $P=x^2+y^2+x-3y$ bằng
$\dfrac{125}{2}$ | |
$80$ | |
$60$ | |
$20$ |
Có bao nhiêu số nguyên dương $a$ sao cho ứng với mỗi số $a$ có đúng ba số nguyên $b$ thỏa mãn $\big(3^b-3\big)\big(a\cdot2^b-18\big)< 0$?
$72$ | |
$73$ | |
$71$ | |
$74$ |
Ông A dự định gửi vào ngân hàng một số tiền với lãi suất $7,5\%$ một năm, để sau $5$ năm, số tiền lãi đủ mua một chiếc xe máy trị giá $85$ triệu đồng. Biết rằng, cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn ban đầu. Hỏi số tiền ông A cần gửi cho ngân hàng gần nhất với số tiền nào dưới đây?
$60$ triệu đồng | |
$189$ triệu đồng | |
$196$ triệu đồng | |
$210$ triệu đồng |
Tập nghiệm của bất phương trình $\left(\dfrac{1}{2}\right)^x>\dfrac{1}{8}$ là
$\left(-\infty;4\right)$ | |
$\left(-\infty;3\right)$ | |
$\left(3;+\infty\right)$ | |
$\left(4;+\infty\right)$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
$24$ | |
Vô số | |
$26$ | |
$25$ |
Tập nghiệm của bất phương trình $3^x< 2$ là
$\left(-\infty;\log_32\right)$ | |
$\left(\log_32;+\infty\right)$ | |
$\left(-\infty;\log_23\right)$ | |
$\left(\log_23;+\infty\right)$ |
Tập nghiệm của bất phương trình $2^{2x-1}< 8$ là
$\left(-\infty;2\right]$ | |
$\left(-\infty;0\right)$ | |
$\left(-\infty;0\right]$ | |
$\left(-\infty;2\right)$ |
Có bao nhiêu số nguyên $a$ sao cho ứng với mỗi $a$, tồn tại ít nhất bốn số nguyên $b\in(-12;12)$ thỏa mãn $4^{a^2+b}\leq3^{b-a}+65$?
$4$ | |
$6$ | |
$5$ | |
$7$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(4^x-5\cdot2^{x+2}+64\right)\sqrt{2-\log(4x)}\geq0$?
$22$ | |
$25$ | |
$23$ | |
$24$ |
Tập nghiệm của bất phương trình $2^x>6$ là
$\left(\log_26;+\infty\right)$ | |
$(-\infty;3)$ | |
$(3;+\infty)$ | |
$\left(-\infty;\log_26\right)$ |
Trong năm 2019, diện tích rừng trồng mới của tỉnh A là \(600\) ha. Giả sử diện tích rừng trồng mới của tỉnh A mỗi năm tiếp theo đều tăng \(6\%\) so với diện tích rừng trồng mới của năm liền trước. Kể từ sau năm 2019, năm nào dưới đây là năm đầu tiên tỉnh A có diện tích rừng trồng mới trong năm đó đạt trên \(1000\) ha?
Năm 2028 | |
Năm 2047 | |
Năm 2027 | |
Năm 2046 |
Tập nghiệm của bất phương trình \(3^{x^2-13}<27\) là
\(\left(4;+\infty\right)\) | |
\(\left(-4;4\right)\) | |
\(\left(-\infty;4\right)\) | |
\(\left(0;4\right)\) |