Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
![]() | $\left(-1;0\right)$ |
![]() | $\left(-2;-1\right)$ |
![]() | $\left(1;2\right)$ |
![]() | $\left(0;1\right)$ |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
![]() | \(4\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(1\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
![]() | \(3\) |
![]() | \(4\) |
![]() | \(1\) |
![]() | \(2\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên. Đồ thị của \(f(x)\) có
![]() | \(2\) đường tiệm cận đứng là \(x=2\) và \(x=-4\) |
![]() | \(2\) đường tiệm cận ngang là \(y=2\) và \(y=-4\) |
![]() | \(2\) đường tiệm cận ngang là \(x=2\) và \(x=-4\) |
![]() | \(2\) đường tiệm cận đứng là \(y=2\) và \(y=-4\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng có phương trình
![]() | \(x=2\) |
![]() | \(y=2\) |
![]() | \(x=1\) |
![]() | \(y=1\) |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
![]() | $-2$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $0$ |
Cho hàm số trùng phương $f(x)=ax^4+bx^2+c$ có đồ thị như hình vẽ.
Hỏi đồ thị hàm số $y=\dfrac{2022}{\big[f(x)\big]^2+2f(x)-3}$ có tổng cộng bao nhiêu tiệm cận đứng?
![]() | $4$ |
![]() | $3$ |
![]() | $5$ |
![]() | $2$ |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,b,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
![]() | $-2$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $0$ |
Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).
![]() | \(T=1\) |
![]() | \(T=2\) |
![]() | \(T=3\) |
![]() | \(T=4\) |
Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.
Khẳng định nào sau đây đúng?
![]() | $\max\limits_{[-1;3]}f(x)=f(0)$ |
![]() | $\max\limits_{[-1;3]}f(x)=f(3)$ |
![]() | $\max\limits_{[-1;3]}f(x)=f(-1)$ |
![]() | $\max\limits_{[-1;3]}f(x)=f(2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
![]() | $0$ |
![]() | $3$ |
![]() | $2$ |
![]() | $1$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
![]() | $5$ |
![]() | $3$ |
![]() | $6$ |
![]() | $4$ |
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là
![]() | $4$ |
![]() | $3$ |
![]() | $2$ |
![]() | $1$ |
Cho hàm số $f(x)$ có bảng biến thiên như sau:
Hàm số đã cho đạt cực đại tại
![]() | $x=-2$ |
![]() | $x=3$ |
![]() | $x=5$ |
![]() | $x=-3$ |
Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x-2}{x+4}$ là đường thẳng có phương trình
![]() | $x=4$ |
![]() | $x=3$ |
![]() | $x=-3$ |
![]() | $x=-4$ |
Cho hàm số $y=ax^3-3x^2+b$ ($a\neq0$) có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
![]() | $a>0,\,b< 0$ |
![]() | $a< 0,\,b>0$ |
![]() | $a>0,\,b>0$ |
![]() | $a< 0,\,b< 0$ |
Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:
Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng
![]() | $1$ |
![]() | $4$ |
![]() | $0$ |
![]() | $5$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
![]() | $(-\infty;1)$ |
![]() | $(0;1)$ |
![]() | $(-1;0)$ |
![]() | $(-2;+\infty)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho bằng
![]() | $-2$ |
![]() | $-1$ |
![]() | $4$ |
![]() | $3$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:
Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng
![]() | $15$ |
![]() | $\dfrac{25}{3}$ |
![]() | $\dfrac{19}{3}$ |
![]() | $12$ |