Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng
$\dfrac{V_1}{V_2}=\dfrac{7}{17}$ | |
$\dfrac{V_1}{V_2}=\dfrac{7}{24}$ | |
$\dfrac{V_1}{V_2}=\dfrac{17}{24}$ | |
$\dfrac{V_1}{V_2}=\dfrac{7}{12}$ |
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$ có đáy hình vuông. $BD=2a$, góc giữa hai mặt phẳng $\left(A'BD\right)$ và $(ABCD)$ bằng $30^\circ$. Thể tích của khối hộp chữ nhật đã cho bằng
$6\sqrt{3}a^3$ | |
$\dfrac{2\sqrt{3}}{9}a^3$ | |
$2\sqrt{3}a^3$ | |
$\dfrac{2\sqrt{3}}{3}a^3$ |
Thể tích của khối hộp chữ nhật có ba kích thước $2,\,3,\,7$ bằng
$14$ | |
$42$ | |
$126$ | |
$12$ |
Các kích thước của một bể bơi được cho trên hình vẽ (mặt nước có dạng hình chữ nhật).
Hãy tính xem bể bơi chứa được bao nhiêu mét khối nước khi nó đầy ắp nước?
$1000$m$^3$ | |
$640$m$^3$ | |
$570$m$^3$ | |
$500$m$^3$ |
Một người bán gạo muốn đóng một thùng tôn đựng gạo có thể tích không đổi bằng $8$m$^3$, thùng tôn hình hộp chữ nhật có đáy là hình vuông, không nắp. Trên thị trường, giá tôn làm đáy thùng là $100.000$ đồng/m$^2$, giá tôn làm thành xung quanh thùng là $50.000$ đồng/m$^2$. Hỏi người bán gạo đó cần đóng thùng đựng gạo với cạnh đáy bằng bao nhiêu để chi phí mua nguyên liệu là nhỏ nhất?
$3$m | |
$1{,}5$m | |
$2$m | |
$1$m |
Tính thể tích của khối gỗ có hình dạng dưới đây
$328$cm$^3$ | |
$456$cm$^3$ | |
$584$cm$^3$ | |
$712$cm$^3$ |
Một bể cá hình hộp chữ nhật có thể tích $0{,}36$m$^3$. Biết kích thước của đáy bể lần lượt bằng $0{,}5$m và $1{,}2$m. Chiều cao của bể cá bằng
$0{,}65$m | |
$0{,}6$m | |
$0{,}7$m | |
$0{,}5$m |
Một viên gạch dạng khối hộp chữ nhật có ba kích thước là $3$cm, $10$cm, $20$cm. Tính thể tích viên gạch đó.
$300$cm$^3$ | |
$200$cm$^3$ | |
$600$cm$^3$ | |
$1200$cm$^3$ |
Nếu ba kích thước của một khối hộp chữ nhật tăng lên $3$ lần thì thể tích của nó tăng lên bao nhiêu lần?
$3$ lần | |
$9$ lần | |
$18$ lần | |
$27$ lần |
Cho khối hộp chữ nhật có ba kích thước \(3,\,4,\,5\). Thể tích của khối hộp đã cho bằng
\(10\) | |
\(20\) | |
\(12\) | |
\(60\) |
Cho khối lăng trụ có đáy là hình vuông cạnh $a$ và chiều cao bằng $4a$. Thể tích của khối lăng trụ đã cho bằng
$\dfrac{16}{3}a^3$ | |
$16a^3$ | |
$4a^3$ | |
$\dfrac{4}{3}a^3$ |
Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng
$\dfrac{3}{2}a^3$ | |
$\dfrac{1}{2}a^3$ | |
$2\sqrt{3}a^3$ | |
$\dfrac{2\sqrt{3}}{3}a^3$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $B$, $AB=BC=a$ và $AA'=6a$. Thể tích của khối lăng trụ $ABC.A'B'C'$ bằng
$6a^3$ | |
$2a^3$ | |
$3a^3$ | |
$a^3$ |
Thể tích khối lăng trụ có chiều cao là $h$ và diện tích đáy là $B$ bằng
$Bh$ | |
$\dfrac{1}{3}Bh$ | |
$3Bh$ | |
$\dfrac{4}{3}Bh$ |
Nếu khối lăng trụ $ABC.A'B'C'$ có thể tích $V$ thì khối chóp $A'.ABC$ có thể tích bằng
$\dfrac{V}{3}$ | |
$V$ | |
$\dfrac{2V}{3}$ | |
$3V$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$ với $AC=4a$ và mặt bên $AA'B'B$ là hình vuông. Thể tích của khối lăng trụ $ABC.A'B'C'$ bằng
$\dfrac{a^3}{8}$ | |
$64a^3$ | |
$\dfrac{a^3}{4}$ | |
$32a^3$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$, $AB=a$. Biết khoảng cách từ $A$ đến mặt phẳng $(A'BC)$ bằng $\dfrac{\sqrt{6}}{3}a$, thể tích khối lăng trụ đã cho bằng
$\dfrac{\sqrt{2}}{6}a^3$ | |
$\dfrac{\sqrt{2}}{2}a^3$ | |
$\sqrt{2}a^3$ | |
$\dfrac{\sqrt{2}}{4}a^3$ |
Cho khối lăng trụ có chiều cao $h$ và diện tích đáy $B$. Thể tích khối lăng trụ là
$V=\dfrac{1}{3}Bh$ | |
$V=Bh$ | |
$V=3Bh$ | |
$V=\dfrac{1}{6}Bh$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy là tam giác đều cạnh $a$ và $AA'=2a$ (minh họa như hình vẽ bên).
Thể tích của khối lăng trụ đã cho bằng
$\sqrt{3}a^3$ | |
$\dfrac{\sqrt{3}a^3}{6}$ | |
$\dfrac{\sqrt{3}a^3}{3}$ | |
$\dfrac{\sqrt{3}a^3}{2}$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng
$3a^3$ | |
$a^3$ | |
$12\sqrt{2}a^3$ | |
$4\sqrt{2}a^3$ |