Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
$\big\{0;1\big\}$ | |
$\big\{1\big\}$ | |
$\big\{-1;1\big\}$ | |
$\big\{0\big\}$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\big|3x^4-4x^3-12x^2+m\big|$ có $7$ điểm cực trị?
$4$ | |
$6$ | |
$3$ | |
$5$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?
$16$ | |
$6$ | |
$17$ | |
$7$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x+2)^2(x-1)^5\big(x^2-2(m-6)x+m\big)$ với mọi $x\in\mathbb{R}$. Số giá trị nguyên dương của tham số $m$ để hàm số đã cho có đúng một điểm cực trị là
$7$ | |
$5$ | |
$6$ | |
$4$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
$3$ | |
$4$ | |
$1$ | |
$2$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=x^{2}+10x$, $\forall x\in\mathbb{R}$. Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=f\left(x^4-8x^2+m\right)$ có đúng $9$ điểm cực trị?
$16$ | |
$9$ | |
$15$ | |
$10$ |
Tìm tất cả giá trị của tham số \(m\) để đồ thị hàm số \(y=x^4+(6m-4)x^2+1-m\) có \(3\) điểm cực trị.
\(m\geq\dfrac{2}{3}\) | |
\(m\leq\dfrac{2}{3}\) | |
\(m>\dfrac{2}{3}\) | |
\(m<\dfrac{2}{3}\) |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
$y=x^3-2x^2-1$ | |
$y=-x^4+2x^2-1$ | |
$y=x^4-2x^2-1$ | |
$y=x^4+2x^2+1$ |
Cho hàm số $f(x)=x^4-32x^2+4$. Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, tổng giá trị các nghiệm phân biệt thuộc khoảng $(-3;2)$ của phương trình $f\big(x^2+2x+3\big)=m$ bằng $-4$?
$145$ | |
$142$ | |
$144$ | |
$143$ |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=-x^4+6x^2+mx$ có ba điểm cực trị?
$17$ | |
$15$ | |
$3$ | |
$7$ |
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
$\{0;1\}$ | |
$\{1\}$ | |
$\{-1;1\}$ | |
$\{0\}$ |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
$y=x^3-2x^2-1$ | |
$y=-x^4+2x^2-1$ | |
$y=x^4-2x^2-1$ | |
$y=x^4+2x^2+1$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như đường cong trong hình bên.
Số điểm cực trị của hàm số đã cho là
$2$ | |
$3$ | |
$1$ | |
$0$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.
Tìm $m$ để hàm số $g(x)=f\big(x^2+m\big)$ có $3$ điểm cực trị.
$m\in(-\infty;0]$ | |
$m\in(3;+\infty)$ | |
$m\in[0;3)$ | |
$m\in(0;3)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=(x-1)^2\big(x^2-2x\big)$ với $\forall x\in\mathbb{R}$. Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $f\big(x^2-8x+m\big)$ có $5$ điểm cực trị?
$17$ | |
$15$ | |
$16$ | |
$18$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
$15$ | |
$16$ | |
$17$ | |
$18$ |
Tìm các giá trị thực của tham số $m$ để đồ thị hàm số $y=x^4-2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$.
$m=2$ | |
$m=-2$ | |
$m=\pm2$ | |
$m=32$ |
Cho hàm số $y=\dfrac{x^4}{4}-(3m+1)x^2+2(m+1)$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có trọng tâm là gốc tọa độ.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{1}{3}$ | |
$m=\dfrac{1}{3}$ |
Cho hàm số $y=\dfrac{9}{8}x^4+3(m-3)x^2+4m+2022$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác đều.
$m=-2$ | |
$m=2$ | |
$m=3$ | |
$m=2022$ |