Ngân hàng bài tập

Bài tập tương tự

SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3}{12}$
$\dfrac{a^3}{9}$
$\dfrac{a^3\sqrt{2}}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).

Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3}{8}$
$\dfrac{3a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{a^3}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.

$V=\dfrac{7\sqrt{6}a^3}{72}$
$V=\dfrac{7\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{72}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng

$\dfrac{a^3}{4}$
$\dfrac{a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{\sqrt{3}a^3}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp tam giác $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $2a$ và $SA$ vuông góc với mặt phẳng $(ABC)$ (tham khảo hình vẽ).

Biết thể tích của khối chóp $S.ABC$ là $\dfrac{a^3\sqrt{3}}{2}$ và góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ là góc nhọn $\alpha$. Chọn phát biểu đúng.

$\alpha=60^{\circ}$
$\alpha=45^{\circ}$
$\alpha=30^{\circ}$
$\tan\alpha=\dfrac{\sqrt{3}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có góc tạo bởi các cạnh bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?

$S.ABC$ là hình chóp đều
$H$ là trực tâm của $\triangle ABC$
$H$ là tâm đường tròn ngoại tiếp $\triangle ABC$
$H$ là tâm đường tròn nội tiếp $\triangle ABC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng

$\dfrac{3}{2}a^3$
$\dfrac{1}{2}a^3$
$2\sqrt{3}a^3$
$\dfrac{2\sqrt{3}}{3}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Nếu khối lăng trụ $ABC.A'B'C'$ có thể tích $V$ thì khối chóp $A'.ABC$ có thể tích bằng

$\dfrac{V}{3}$
$V$
$\dfrac{2V}{3}$
$3V$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho khối chóp $S.ABC$ có đáy là tam giác vuông cân tại $A$, $AB=2$, $SA$ vuông góc với đáy và $SA=3$ (tham khảo hình bên).

Thể tích khối chóp đã cho bằng

$12$
$2$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho tứ diện $ABCD$, trên các cạnh $BC$, $BD$, $AC$ lần lượt lấy các điểm $M,\,N,\,P$ sao cho $BC=3BM$, $BD=\dfrac{3}{2}BN$, $AC=2AP$. Mặt phẳng $(MNP)$ chia khối tứ diện $ABCD$ thành hai khối đa diện có thể tích là $V_1$, $V_2$, trong đó khối đa diện chứa cạnh $CD$ có thể tích là $V_2$. Tính tỉ số $\dfrac{V_1}{V_2}$.

$\dfrac{V_1}{V_2}=\dfrac{26}{19}$
$\dfrac{V_1}{V_2}=\dfrac{26}{13}$
$\dfrac{V_1}{V_2}=\dfrac{3}{19}$
$\dfrac{V_1}{V_2}=\dfrac{15}{19}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp $S.ABC$.

$\dfrac{a^3\sqrt{3}}{18}$
$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3}{8}$
$\dfrac{a^3}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng

$3a^3$
$a^3$
$12\sqrt{2}a^3$
$4\sqrt{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ và có $AB=a$, $BC=a\sqrt{3}$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3\sqrt{6}}{12}$
$V=\dfrac{a^3\sqrt{6}}{4}$
$V=\dfrac{a^3\sqrt{6}}{6}$
$V=\dfrac{a^3\sqrt{6}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3}{24}$
$V=\dfrac{a^3}{4}$
$V=\dfrac{3a^3}{8}$
$V=\dfrac{a^3}{8}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có tam giác $SBC$ là tam giác vuông cân tại $S$, cạnh $SB=2a$ và khoảng cách từ $A$ đến mặt phẳng $(SBC)$ là $3a$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=2a^3$
$V=4a^3$
$V=6a^3$
$V=12a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông cận tại $B$ và $BC=a$. Cạnh bên $SA=2a$ và vuông góc với mặt phẳng đáy. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=a^3$
$V=\dfrac{a^3\sqrt{3}}{2}$
$V=\dfrac{a^3}{3}$
$V=\dfrac{2a^3}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự