Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=-x^3-x$ | |
$y=-x^4-x^2$ | |
$y=-x^3+x$ | |
$y=\dfrac{x+2}{x-1}$ |
Hàm số nào sau đây nghịch biến trên \(\mathbb{R}\)?
\(y=x^3-3x^2+4\) | |
\(y=-x^4-2x^2-3\) | |
\(y=x^3+3x\) | |
\(y=-x^3+3x^2-3x+2\) |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=x^4-x^2$ | |
$y=x^3-x$ | |
$y=\dfrac{x-1}{x+2}$ | |
$y=x^3+x$ |
Hàm số nào dưới đây đồng biến trên $\mathbb{R}$?
$y=\dfrac{x+1}{x-2}$ | |
$y=x^2+2x$ | |
$y=x^3-x^2+x$ | |
$y=x^4-3x^2+2$ |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-(m+1)x^2+(4m-8)x+2$$nghịch biến trên \(\mathbb{R}\).
\(9\) | |
\(7\) | |
Vô số | |
\(8\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=(m-1)x^3+(m-1)x^2-(2m+1)x+5$$nghịch biến trên tập xác định.
\(-\dfrac{5}{4}\leq m\leq1\) | |
\(-\dfrac{2}{7}\leq m<1\) | |
\(-\dfrac{7}{2}\leq m<1\) | |
\(-\dfrac{2}{7}\leq m\leq1\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}-mx^2+(2m-3)x-m+2$$nghịch biến trên \(\mathbb{R}\).
\(m\in(-\infty;-3)\cup(1;+\infty)\) | |
\(m\in[-3;1]\) | |
\(m\in(-\infty;1]\) | |
\(m\in(-3;1)\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=-\dfrac{x^3}{3}+mx^2-(2m+3)x+4$$nghịch biến trên \(\mathbb{R}\).
\(-1\leq m\leq3\) | |
\(-3< m<1\) | |
\(-1< m<3\) | |
\(-3\leq m\leq1\) |
Hàm số nào sau đây đồng biến trên \(\mathbb{R}\)?
\(y=\sqrt{x^2-3x+2}\) | |
\(y=x^4+x^2+1\) | |
\(y=\dfrac{x-1}{x+1}\) | |
\(y=x^3+5x+13\) |
Hàm số $y=x^3-6x^2+1$ nghịch biến trên khoảng
$(-1;+\infty)$ | |
$(1;5)$ | |
$(-\infty;1)$ | |
$(0;4)$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
$4$ | |
$6$ | |
$5$ | |
$7$ |
Hàm số $y=\dfrac{1}{3}x^3+3x^2-7x-\dfrac{20}{3}$ nghịch biến trên khoảng nào trong những khoảng sau đây?
$(-7;1)$ | |
$(-7;2)$ | |
$(-\infty;-7)$ | |
$(1;+\infty)$ |
Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Cho hàm số $y=f(x)$ có đồ thị là đường cong trong hình bên.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
$(0;1)$ | |
$(-\infty;0)$ | |
$(0;+\infty)$ | |
$(-1;1)$ |