Cho hình lăng trụ tam giác đều $ABC.A'B'C'$ có $AB=a$, $AA'=2a$. Một khối trụ có hai đáy là hai đường tròn ngoại tiếp hai tam giác $ABC.A'B'C'$. Thể tích của khối trụ đó bằng
$\dfrac{4\pi a^3}{3}$ | |
$\pi a^3$ | |
$\dfrac{2\pi a^3}{3}$ | |
$\dfrac{\pi a^3}{3}$ |
Cho khối trụ có bán kính đáy là $5$ và chiều cao là $3$. Thể tích của khối trụ đã cho bằng
$5\pi$ | |
$75\pi$ | |
$30\pi$ | |
$45\pi$ |
Một bình đựng nước dạng hình nón (không có nắp đậy), đựng đầy nước. Biết rằng chiều cao của bình gấp $3$ lần bán kính đáy của nó. Người ta thả vào bình đó một khối trụ và đo được thể tích nước tràn ra ngoài là $\dfrac{16\pi}{9}\text{dm}^3$. Biết rằng một mặt của khối trụ nằm trên mặt đáy của hình nón và khối trụ có chiều cao bằng đường kính đáy của hình nón (hình vẽ).
Tính bán kính đáy $R$ của bình nước.
$R=4$dm | |
$R=2$dm | |
$R=3$dm | |
$R=5$dm |
Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng $3$ lần đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào cốc nước viên bi và khối nón sao cho đỉnh khối nón nằm trên mặt cầu (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài.
Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề dày của lớp vỏ thủy tinh).
$\dfrac{1}{2}$ | |
$\dfrac{2}{3}$ | |
$\dfrac{4}{9}$ | |
$\dfrac{5}{9}$ |
Cho hình trụ có chiều cao bằng \(6a\), Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng \(3a\), thiết diện thu được là một hình vuông. Thể tích của khối trụ được giới hạn bởi hình trụ đã cho bằng
\(216\pi a^3\) | |
\(150\pi a^3\) | |
\(54\pi a^3\) | |
\(108\pi a^3\) |
Tính thể tích của khối trụ có bán kính đáy bằng \(a\) và độ dài đường sinh bằng \(a\sqrt{3}\).
\(V=\pi a^3\sqrt{3}\) | |
\(V=\dfrac{\pi a^3\sqrt{3}}{3}\) | |
\(V=3\pi a^3\) | |
\(V=\pi a^2\sqrt{3}\) |
Một hình trụ có đường kính đáy \(12\)cm, chiều cao \(10\)cm. Thể tích khối trụ này là
\(1440\pi\text{ cm}^3\) | |
\(360\pi\text{ cm}^3\) | |
\(480\pi\text{ cm}^3\) | |
\(1440\text{ cm}^3\) |
Cho hình trụ có bán kính đường tròn đáy bằng \(4\), diện tích xung quanh bằng \(48\pi\). Tính thể tích của khối trụ đã cho.
\(V=24\pi\) | |
\(V=32\pi\) | |
\(V=96\pi\) | |
\(V=72\pi\) |
Cho hình chữ nhật \(ABCD\) có \(AB=a\), \(BC=b\). Gọi \(M,\,N\) lần lượt là trung điểm của \(AB\) và \(CD\). Tính thể tích khối trụ thu được khi quay hình chữ nhật \(ABCD\) quanh trục \(MN\).
\(V=\dfrac{\pi a^2b}{4}\) | |
\(V=\pi a^2b\) | |
\(V=\dfrac{\pi a^2b}{12}\) | |
\(V=\dfrac{\pi a^2b}{3}\) |
Cắt một khối trụ bởi một mặt phẳng qua trục ta được thiết diện là hình chữ nhật \(ABCD\) có \(AB\) và \(CD\) thuộc hai đáy của hình trụ, biết \(AB=4a\), \(AC=5a\). Tính thể tích của khối trụ.
\(V=4\pi a^3\) | |
\(V=16\pi a^3\) | |
\(V=12\pi a^3\) | |
\(V=8\pi a^3\) |
Một hình trụ có hai đáy là hai hình tròn nội tiếp hai mặt của một hình lập phương cạnh \(a\). Tính thể tích của khối trụ đã cho.
\(V=\dfrac{\pi a^3}{12}\) | |
\(V=\dfrac{\pi a^3}{6}\) | |
\(V=\dfrac{\pi a^3}{2}\) | |
\(V=\dfrac{\pi a^3}{4}\) |
Một khối trụ có hay đáy là hai hình tròn \((I,r)\) và \((I',r')\). Mặt phẳng \((\beta)\) đi qua \(I\) và \(I'\) đồng thời cắt khối trụ theo thiết diện là hình vuông cạnh bằng \(18\). Tính thể tích của khối trụ đã cho.
\(V=486\pi\) | |
\(V=1458\) | |
\(V=1458\pi\) | |
\(V=486\) |
Cho hình trụ có bán kính đáy \(r=3\) và diện tích xung quanh \(S=6\pi\). Tính thể tích \(V\) của khối trụ.
\(V=3\pi\) | |
\(V=9\pi\) | |
\(V=18\pi\) | |
\(V=6\pi\) |
Cho hình trụ có bán kính đáy bằng \(2a\), một mặt phẳng đi qua trục của hình trụ và cắt hình trụ theo thiết diện là hình vuông. Tính thể tích \(V\) của khối trụ đã cho.
\(V=18\pi a^3\) | |
\(V=4\pi a^3\) | |
\(V=8\pi a^3\) | |
\(V=16\pi a^3\) |
Thể tích \(V\) của khối trụ có bán kính đáy \(R\) và độ dài đường sinh \(\ell\) được tính theo công thức nào dưới đây?
\(V=\dfrac{1}{3}R^2\ell\) | |
\(V=\dfrac{4}{3}\pi R^2\ell\) | |
\(V=\dfrac{4}{3}\pi R^3\ell\) | |
\(V=\pi R^2\ell\) |
Bán kính đáy của khối trụ tròn xoay có thể tích \(V\) và chiều cao \(h\) là
\(r=\sqrt{\dfrac{V}{\pi h}}\) | |
\(r=\sqrt{\dfrac{2V}{\pi h}}\) | |
\(r=\sqrt{\dfrac{V}{2\pi h}}\) | |
\(r=\sqrt{\dfrac{3V}{\pi h}}\) |
Thể tích của khối trụ có bán kính đáy \(R\) và chiều cao \(h\) là
\(V=2\pi R^2h\) | |
\(V=\dfrac{4}{3}\pi R^2h\) | |
\(V=\pi R^2h\) | |
\(V=\dfrac{1}{3}\pi R^2h\) |
Cho khối lăng trụ tam giác đều có tất cả các cạnh bằng nhau và thể tích của khối lăng trụ bằng $2\sqrt{3}$. Tính cạnh của khối lăng trụ.
$6$ | |
$4$ | |
$3$ | |
$2$ |
Một vật rắn gồm một nửa hình cầu, một hình trụ và một hình nón có hình dạng và kích thước như hình bên dưới.
Thể tích của vật rắn đã cho bằng
$120\pi\text{ cm}^3$ | |
$144\pi\text{ cm}^3$ | |
$126\pi\text{ cm}^3$ | |
$111\pi\text{ cm}^3$ |
Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng $a^2\sqrt{3}$. Tính thể tích $V$ của khối nón đã cho.
$V=\dfrac{\pi a^3\sqrt{3}}{3}$ | |
$V=\dfrac{\pi a^3\sqrt{3}}{2}$ | |
$V=\dfrac{\pi a^3\sqrt{3}}{6}$ | |
$V=\dfrac{\pi a^3\sqrt{6}}{6}$ |