Gọi $x_1,\,x_2$ là các điểm cực trị của hàm số $y=x^3-2x^2-7x+1$. Tính $x_1^2+x_2^2$.
![]() | $\dfrac{44}{9}$ |
![]() | $\dfrac{16}{3}$ |
![]() | $\dfrac{28}{3}$ |
![]() | $\dfrac{58}{9}$ |
Đồ thị hàm số \(y=x^3-2mx^2+m^2x+n\) có tọa độ điểm cực tiểu là \((1;3)\). Khi đó \(m+n\) bằng
![]() | \(4\) |
![]() | \(3\) |
![]() | \(2\) |
![]() | \(1\) |
Hàm số \(y=x^3-9x^2+1\) có hai điểm cực trị là \(x_1,\,x_2\). Tính \(x_1+x_2\).
![]() | \(6\) |
![]() | \(-10\) |
![]() | \(0\) |
![]() | \(-107\) |
Hàm số $y=\dfrac{1}{3}x^3-mx^2+\big(m^2-m-1\big)x+m^3$ đạt cực đại tại điểm $x=1$ thì giá trị của tham số $m$ bằng
![]() | $\left[\begin{array}{l}m=0\\ m=3\end{array}\right.$ |
![]() | $m=0$ |
![]() | $m=-3$ |
![]() | $m=3$ |
Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.
![]() | $12$ |
![]() | $7$ |
![]() | $\dfrac{31}{3}$ |
![]() | $\dfrac{16}{3}$ |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
![]() | $y=x^3-2x^2-1$ |
![]() | $y=-x^4+2x^2-1$ |
![]() | $y=x^4-2x^2-1$ |
![]() | $y=x^4+2x^2+1$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?
![]() | $16$ |
![]() | $6$ |
![]() | $17$ |
![]() | $7$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Giá trị cực đại của hàm số đã cho là
![]() | $-1$ |
![]() | $3$ |
![]() | $2$ |
![]() | $0$ |
Trong các hàm số sau, hàm số nào không có cực trị?
![]() | $y=x^2$ |
![]() | $y=\dfrac{x+2}{2x-1}$ |
![]() | $y=x^4+2x^2+2$ |
![]() | $y=-x^3-x^2$ |
Biết đồ thị của hàm số $f(x)=ax^3+bx^2+cx+d$ có hai điểm cực trị là $A(1;1)$ và $B\left(2;\dfrac{4}{3}\right)$. Tính $f(-1)$.
![]() | $12$ |
![]() | $7$ |
![]() | $\dfrac{31}{3}$ |
![]() | $\dfrac{16}{3}$ |
Tìm các điểm cực trị hàm số $f(x)=x^3-3x+1$.
Cho hàm số $f(x)=x^3+ax^2+bx+c$ có đồ thị $\left(\mathscr{C}\right)$. Mệnh đề nào sau đây sai?
![]() | Đồ thị $\left(\mathscr{C}\right)$ luôn có tâm đối xứng |
![]() | Hàm số $f(x)$ luôn có cực trị |
![]() | Đồ thị $\left(\mathscr{C}\right)$ luôn cắt trục hoành |
![]() | $\lim\limits_{x\to+\infty}f(x)=+\infty$ |
Số điểm cực trị của hàm số $y=\dfrac{1}{3}x^3-2x^2+4$ là
![]() | $0$ |
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
Giá trị cực tiểu $y_{CT}$ của hàm số $y=x^3-3x^2+2$ là
![]() | $y_{CT}=0$ |
![]() | $y_{CT}=-2$ |
![]() | $y_{CT}=1$ |
![]() | $y_{CT}=4$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.
![]() | $m=0$ |
![]() | $m=\pm\dfrac{9}{2}$ |
![]() | $m=\pm\dfrac{3}{2}$ |
![]() | $m=\pm\dfrac{1}{2}$ |
Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.
![]() | $m=0$ |
![]() | $m=\pm\dfrac{9}{2}$ |
![]() | $m=\pm\dfrac{1}{2}$ |
![]() | $m=\pm2$ |
Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.
![]() | $P=-4$ |
![]() | $P=1$ |
![]() | $P=-\dfrac{3}{2}$ |
![]() | $P=-5$ |
Đồ thị hàm số $y=x^3-3x^2-9x+1$ có hai điểm cực trị là $A$ và $B$. Điểm nào sau đây thuộc đường thẳng $AB$?
![]() | $M(0;-1)$ |
![]() | $Q(-1;10)$ |
![]() | $P(1;0)$ |
![]() | $N(1;-10)$ |
Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=-2x^3+3x^2+1$.
![]() | $y=x+1$ |
![]() | $y=-x+1$ |
![]() | $y=x-1$ |
![]() | $y=-x-1$ |
Biết đồ thị hàm số $y=x^3-3x+1$ có hai điểm cực trị $A,\,B$. Khi đó đường thẳng $AB$ có phương trình
![]() | $y=2x-1$ |
![]() | $y=x-2$ |
![]() | $y=-x+2$ |
![]() | $y=-2x+1$ |