Ngân hàng bài tập

Bài tập tương tự

C

Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.

Khẳng định nào sau đây sai?

$f(x)$ đồng biến trên khoảng $(1;2)$
$f(x)$ nghịch biến trên khoảng $(-1;0)$
$f(x)$ nghịch biến trên khoảng $(-1;1)$
$f(x)$ đồng biến trên khoảng $(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.

Hãy xác định hàm số đó.

$y=-x^4-4x^2+1$
$y=x^3-3x+1$
$y=-x^3+3x-1$
$y=x^3+3x+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hàm số nào dưới đây có bảng biến thiên như hình bên?

$y=-x^3+3x+1$
$y=\dfrac{x-1}{x+1}$
$y=\dfrac{x+1}{x-1}$
$y=x^4-x^2+1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

$(-1;1)$
$(-2;0)$
$(-2;-1)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là

$2020$
$2019$
$2021$
$2022$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.

Hàm số đã cho nghịch biến trên khoảng nào sau đây?

$(-\infty;0)$
$(-1;1)$
$(1;4)$
$(1;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.

Hàm số đã cho đồng biến trên khoảng nào sau đây?

$(2;+\infty)$
$(-2;2)$
$(0;2)$
$(-\infty;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.

Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng

$(1;+\infty)$
$(-1;2)$
$(2;+\infty)$
$(-\infty;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?

$2$
$5$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Giá trị cực đại của hàm số đã cho là

$-1$
$3$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường cong trong hình vẽ sau là đồ thị của hàm số nào dưới đây?

$y=-x^3+3x-2$
$y=x^3-3x+2$
$y=x^4-3x^2-2$
$y=x^4-3x^2+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đường cong trong hình vẽ bên là đồ thị của hàm số nào sau đây?

$y=-x^3+3x+2$
$y=x^3-2x+2$
$y=x^3-3x+2$
$y=x^3+3x+2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Hình bên là đồ thị hàm số $y=f'(x)$.

Hỏi hàm số $y=f(x)$ đồng biến trên khoảng nào dưới đây?

$(0;1)$ và $(2;+\infty)$
$(1;2)$
$(2;+\infty)$
$(0;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm, liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=\big[f(x)\big]^2$ nghịch biến trên khoảng nào sau đây?

$(-1;1)$
$\left(0;\dfrac{5}{2}\right)$
$\left(\dfrac{5}{2};4\right)$
$(-2;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$. Biết hàm số $f'(x)$ liên tục trên $\mathbb{R}$ và có đồ thị như hình vẽ.

Hàm số $g(x)=f\left(\sqrt{x^2+1}\right)$ đồng biến trên khoảng

$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;\sqrt{3}\right)$
$\left(-\infty;-\sqrt{3}\right)$ và $\left(\sqrt{3};+\infty\right)$
$\left(-\sqrt{3};0\right)$ và $\left(\sqrt{3};+\infty\right)$
$\left(-\infty;-\sqrt{3}\right)$ và $\left(0;+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có đồ thị hàm $f'(x)$ như hình vẽ.

Tìm khoảng nghịch biến của hàm số $g(x)=f\big(x-x^2\big)$.

$\left(-\dfrac{1}{2};+\infty\right)$
$\left(-\dfrac{3}{2};+\infty\right)$
$\left(-\infty;\dfrac{3}{2}\right)$
$\left(\dfrac{1}{2};+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$. Đồ thị hàm số $f'(x)$ được cho như hình vẽ.

Hàm số $g(x)=4f(x)+x^2-4x+2022$ đồng biến trên khoảng nào sau đây?

$[-2;0]$ và $[2;+\infty)$
$(-\infty;-2]$ và $[0;2]$
$[-2;2]$
$(-\infty;-2]$ và $[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm bậc bốn $y=f(x)$ có đồ thị $f'(x)$ như hình vẽ bên.

Hàm số $y=f(1-3x)-4$ nghịch biến trên khoảng

$\left(-\dfrac{1}{3};\dfrac{1}{3}\right)$
$(0;2)$
$(-\infty;-1)$
$\left(\dfrac{1}{3};\dfrac{2}{3}\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Số nghiệm thực phân biệt của phương trình $f\big(f(x)\big)=1$ là

$9$
$3$
$6$
$7$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.

Mệnh đề nào dưới đây đúng?

$y'< 0,\,\forall x\ne-1$
$y'>0,\,\forall x\ne-1$
$y'< 0,\,\forall x\in\mathbb{R}$
$y'>0,\,\forall x\in\mathbb{R}$
1 lời giải Sàng Khôn
Lời giải Tương tự