Trên mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(1;1)\), \(B(0;-2)\) và \(C(4;2)\). Lập phương trình đường trung tuyến của tam giác kẻ từ \(A\).
\(x+y-2=0\) | |
\(2x+y-3=0\) | |
\(x+2y-3=0\) | |
\(x-y=0\) |
Cho tam giác \(ABC\) có \(A(2;0)\), \(B(0;3)\) và \(C(-3;1)\). Đường thẳng \(d\) đi qua \(B\) và song song với \(AC\) có phương trình tổng quát là
\(5x+y+3=0\) | |
\(5x+y-3=0\) | |
\(x+5y-15=0\) | |
\(x-15y+15=0\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(2;4)\), \(B(5;0)\) và \(C(2;1)\). Biết rằng trung tuyến \(BM\) của tam giác đi qua điểm \(N\left(20;y_0\right)\). Tìm \(y_0\).
\(y_0=-12\) | |
\(y_0=-\dfrac{25}{2}\) | |
\(y_0=-13\) | |
\(y_0=-\dfrac{27}{2}\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(2;-1)\), \(B(4;5)\) và \(C(-3;2)\). Viết phương trình đường cao của tam giác kẻ từ đỉnh \(C\).
\(x+y-1=0\) | |
\(x+3y-3=0\) | |
\(3x+y+11=0\) | |
\(3x-y+11=0\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(2;-1)\), \(B(4;5)\) và \(C(-3;2)\). Viết phương trình đường cao của tam giác kẻ từ đỉnh \(B\).
\(3x-5y-13=0\) | |
\(3x+5y-20=0\) | |
\(3x+5y-37=0\) | |
\(5x-3y-5=0\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(2;-1)\), \(B(4;5)\) và \(C(-3;2)\). Viết phương trình đường cao của tam giác kẻ từ đỉnh \(A\).
\(7x+3y-11=0\) | |
\(-3x+7y+13=0\) | |
\(3x+7y+1=0\) | |
\(7x+3y+13=0\) |
Đường thẳng \(\Delta\) cắt hai trục tọa độ lần lượt tại \(A(2;0)\) và \(B(0;3)\) có phương trình là
\(2x-3y+4=0\) | |
\(3x+2y+6=0\) | |
\(3x+2y-6=0\) | |
\(2x+3y-4=0\) |
Phương trình tổng quát của đường thẳng đi qua hai điểm \(A(3;-1)\) và \(B(1;5)\) là
\(-x+3y+6=0\) | |
\(3x-y+10=0\) | |
\(3x-y+6=0\) | |
\(3x+y-8=0\) |
Trong mặt phẳng \(Oxy\), cho hình bình hành \(ABCD\) có đỉnh \(A(-2;1)\) và đường thẳng \(CD\colon\begin{cases}x=1+4t\\ y=3t\end{cases}\). Viết phương trình tham số của đường thẳng \(AB\).
\(\begin{cases}x=-2+3t\\ y=-2-2t\end{cases}\) | |
\(\begin{cases}x=-2-4t\\ y=1-3t\end{cases}\) | |
\(\begin{cases}x=-2-3t\\ y=1-4t\end{cases}\) | |
\(\begin{cases}x=-2-3t\\ y=1+4t\end{cases}\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(3;2)\), \(P(4;0)\) và \(Q(0;-2)\). Đường thẳng đi qua điểm \(A\) và song song với đường thẳng \(PQ\) có phương trình tham số là
\(\begin{cases}x=3+4t\\ y=2-2t\end{cases}\) | |
\(\begin{cases}x=3-2t\\ y=2+t\end{cases}\) | |
\(\begin{cases}x=-1+2t\\ y=t\end{cases}\) | |
\(\begin{cases}x=-1+2t\\ y=-2+t\end{cases}\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(2;0)\), \(B(0;3)\) và \(C(-3;-1)\). Đường thẳng đi qua điểm \(B\) và song song với đường thẳng \(AC\) có phương trình tham số là
\(\begin{cases}x=5t\\ y=3+t\end{cases}\) | |
\(\begin{cases}x=5\\ y=1+3t\end{cases}\) | |
\(\begin{cases}x=t\\ y=3-5t\end{cases}\) | |
\(\begin{cases}x=3+5t\\ y=t\end{cases}\) |
Cho điểm \(M(1;-3)\), phương trình nào dưới đây không phải phương trình tham số của đường thẳng \(OM\)?
\(\begin{cases}x=1-t\\ y=3t\end{cases}\) | |
\(\begin{cases}x=1+t\\ y=-3-3t\end{cases}\) | |
\(\begin{cases}x=1-2t\\ y=-3+6t\end{cases}\) | |
\(\begin{cases}x=-t\\ y=3t\end{cases}\) |
Cho hai điểm \(A(-1;3)\) và \(B(3;1)\). Đường thẳng \(AB\) có phương trình tham số là
\(\begin{cases}x=-1+2t\\ y=3+t\end{cases}\) | |
\(\begin{cases}x=-1-2t\\ y=3-t\end{cases}\) | |
\(\begin{cases}x=3+2t\\ y=-1+t\end{cases}\) | |
\(\begin{cases}x=-1-2t\\ y=3+t\end{cases}\) |
Viết phương trình tham số của đường thẳng đi qua hai điểm \(A(2;-1)\) và \(B(2;5)\).
\(\begin{cases}x=2\\ y=-1+6t\end{cases}\) | |
\(\begin{cases}x=2t\\ y=-6t\end{cases}\) | |
\(\begin{cases}x=2+t\\ y=5+6t\end{cases}\) | |
\(\begin{cases}x=1\\ y=2+6t\end{cases}\) |
Đường thẳng \(\Delta\) đi qua hai điểm \(E\left(0;4\right)\) và \(F\left(3;0\right)\). \(\Delta\) có phương trình là
\(\dfrac{x}{4}+\dfrac{y}{3}=1\) | |
\(\begin{cases}x=3+&3t\\ y= &4t\end{cases}\) | |
\(\dfrac{x}{3}+\dfrac{y}{4}=0\) | |
\(\dfrac{x}{3}+\dfrac{y}{4}=1\) |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho tam giác $ABC$ với $A(1;-3;4)$, $B(-2;-5;-7)$, $C(6;-3;-1)$. Viết phương trình đường trung tuyến $AM$ của tam giác $ABC$.
Viết phương trình đường thẳng $\Delta$ đi qua hai điểm $P(3;-2)$ và $S(5;1)$.
Tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon(x-2)^2+(y+3)^2=16\) tại điểm \(N(2;1)\) là
\(d_2\colon\begin{cases}x=2\\ y=1-2t\end{cases}\) | |
\(d_3\colon y=-3\) | |
\(d_4\colon x=1\) | |
\(d_1\colon y=1\) |
Đường trung trực của đoạn thẳng \(AB\) với \(A(1;-4)\) và \(B(3;-4)\) có phương trình là
\(y+4=0\) | |
\(x+y-2=0\) | |
\(x=2\) | |
\(y=4\) |