Cho hàm số $y=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là
$(-1;2)$ | |
$(0;1)$ | |
$(1;2)$ | |
$(1;0)$ |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
$1$ | |
$3$ | |
$2$ | |
$4$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
$0$ | |
$3$ | |
$2$ | |
$1$ |
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
$\big\{0;1\big\}$ | |
$\big\{1\big\}$ | |
$\big\{-1;1\big\}$ | |
$\big\{0\big\}$ |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
$y=x^3-2x^2-1$ | |
$y=-x^4+2x^2-1$ | |
$y=x^4-2x^2-1$ | |
$y=x^4+2x^2+1$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=(m+2)x^4+(m-3)x^2+2022$ có ba cực trị là
$4$ | |
$2$ | |
$3$ | |
$6$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số điểm cực tiểu của hàm số đã cho là
$1$ | |
$3$ | |
$0$ | |
$2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ bên.
Hàm số đã cho đạt cực tiểu tại điểm
$x=1$ | |
$x=-2$ | |
$x=2$ | |
$x=3$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f'(x)=(x-1)^2(3-x)\big(x^2-x-1\big)$. Hỏi hàm số $f(x)$ có bao nhiêu điểm cực tiểu?
$3$ | |
$2$ | |
$1$ | |
$0$ |
Trong các hàm số sau, hàm số nào không có cực trị?
$y=x^2$ | |
$y=\dfrac{x+2}{2x-1}$ | |
$y=x^4+2x^2+2$ | |
$y=-x^3-x^2$ |
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
$\{0;1\}$ | |
$\{1\}$ | |
$\{-1;1\}$ | |
$\{0\}$ |
Đồ thị của hàm số nào dưới đây có đúng một điểm cực trị?
$y=x^3-2x^2-1$ | |
$y=-x^4+2x^2-1$ | |
$y=x^4-2x^2-1$ | |
$y=x^4+2x^2+1$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như đường cong trong hình bên.
Số điểm cực trị của hàm số đã cho là
$2$ | |
$3$ | |
$1$ | |
$0$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Điểm cực tiểu của hàm số đã cho là
$x=-2$ | |
$x=2$ | |
$x=-1$ | |
$x=1$ |
Giá trị cực tiểu $y_{CT}$ của hàm số $y=x^3-3x^2+2$ là
$y_{CT}=0$ | |
$y_{CT}=-2$ | |
$y_{CT}=1$ | |
$y_{CT}=4$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu của $f'(x)$ như hình:
Hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu
$1$ | |
$2$ | |
$3$ | |
$4$ |
Tìm các giá trị thực của tham số $m$ để đồ thị hàm số $y=x^4-2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$.
$m=2$ | |
$m=-2$ | |
$m=\pm2$ | |
$m=32$ |
Cho hàm số $y=\dfrac{x^4}{4}-(3m+1)x^2+2(m+1)$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác có trọng tâm là gốc tọa độ.
$m=-\dfrac{2}{3}$ | |
$m=\dfrac{2}{3}$ | |
$m=-\dfrac{1}{3}$ | |
$m=\dfrac{1}{3}$ |
Cho hàm số $y=\dfrac{9}{8}x^4+3(m-3)x^2+4m+2022$ với $m$ là tham số thực. Tìm giá trị của $m$ để đồ thị hàm số có ba điểm cực trị tạo thành tam giác đều.
$m=-2$ | |
$m=2$ | |
$m=3$ | |
$m=2022$ |