Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
$(-\infty;6]$ | |
$(-\infty;3]$ | |
$(-\infty;3)$ | |
$[3;6]$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.
Cho hàm số \(f\left(x\right)=\dfrac{mx-4}{x-m}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)?
\(5\) | |
\(4\) | |
\(3\) | |
\(2\) |
Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).
\(T=-10\) | |
\(T=-9\) | |
\(T=-6\) | |
\(T=-5\) |
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
\(0\) | |
\(3\) | |
\(1\) | |
\(2\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).
\(-2\leq m<-1\) hoặc \(m>1\) | |
\(m\leq-1\) hoặc \(m>1\) | |
\(-1< m<1\) | |
\(m<-1\) hoặc \(m\geq1\) |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
$4$ | |
$6$ | |
$5$ | |
$7$ |
Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.
$7$ | |
$4$ | |
$5$ | |
$6$ |
Tìm $m$ để hàm số $y=\left(2m+1\right)x+m-3$ đồng biến trên $\Bbb{R}$.
$m>\dfrac{1}{2}$ | |
$m<\dfrac{1}{2}$ | |
$m<-\dfrac{1}{2}$ | |
$m>-\dfrac{1}{2}$ |
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng \(\left(-\infty;-7\right)\) là
\(\left[4;7\right)\) | |
\(\left(4;7\right]\) | |
\(\left(4;7\right)\) | |
\(\left(4;+\infty\right)\) |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
\(m\leq3\) | |
\(m\leq-3\) | |
\(m\leq5\) | |
\(m\leq-1\) |
Tìm tất cả giá trị của tham số \(m\) để hàm số $$y=x^3+2x^2-mx+1$$đồng biến trên \(\mathbb{R}\).
\(m\leq-\dfrac{4}{3}\) | |
\(m\geq-\dfrac{4}{3}\) | |
\(m<-\dfrac{4}{3}\) | |
\(m>-\dfrac{4}{3}\) |
Tập hợp các tham số thực \(m\) để hàm số \(y=\dfrac{x}{x-m}\) nghịch biến trên \((1;+\infty)\) là
\((0;1)\) | |
\([0;1)\) | |
\((0;1]\) | |
\([0;1]\) |
Tập hợp các tham số thực \(m\) để hàm số \(y=x^3-3mx^2+3x\) đồng biến trên \((1;+\infty)\) là
\((-\infty;0]\) | |
\((-\infty;1]\) | |
\((-\infty;2)\) | |
\((-\infty;1)\) |
Số giá trị nguyên của tham số \(m\) để hàm số \(y=x^3-mx^2-2mx\) đồng biến trên \(\mathbb{R}\) là
\(0\) | |
\(8\) | |
\(7\) | |
\(6\) |