Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
![]() | \(7\) cm |
![]() | \(49\) cm |
![]() | \(11,4\) cm |
![]() | \(4,44\) cm |
Cho tam giác \(ABC\) có \(AB=3\), \(AC=4\) và \(\tan A=2\sqrt{2}\). Tính cạnh \(BC\).
![]() | \(\sqrt{13}\) |
![]() | \(3\sqrt{2}\) |
![]() | \(4\sqrt{2}\) |
![]() | \(\sqrt{17}\) |
Cho tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(AC=10\), \(AB=6\). Tính cạnh \(BC\).
![]() | \(76\) |
![]() | \(2\sqrt{19}\) |
![]() | \(14\) |
![]() | \(6\sqrt{2}\) |
Tam giác \(ABC\) có \(a=8\), \(c=3\), \(\widehat{B}=60^\circ\). Độ dài cạnh \(b\) bằng bao nhiêu?
![]() | \(49\) |
![]() | \(\sqrt{97}\) |
![]() | \(7\) |
![]() | \(\sqrt{61}\) |
Trong tam giác \(ABC\) có \(AB=2\)cm, \(AC=1\)cm, \(\widehat{A}=60^\circ\). Khi đó độ dài cạnh \(BC\) là
![]() | \(1\)cm |
![]() | \(2\)cm |
![]() | \(\sqrt{3}\)cm |
![]() | \(\sqrt{5}\)cm |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
![]() | \(6,01\) |
![]() | \(5,73\) |
![]() | \(5,85\) |
![]() | \(4,57\) |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
![]() | \(\dfrac{b^2+c^2-a^2}{2bc}\) |
![]() | \(\dfrac{a^2+c^2-b^2}{2ac}\) |
![]() | \(\dfrac{a^2+b^2-c^2}{2ab}\) |
![]() | \(\dfrac{c}{2R}\) |
Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).
![]() | \(\dfrac{2\sqrt{6}}{3}\) |
![]() | \(\dfrac{3\sqrt{6}}{2}\) |
![]() | \(\sqrt{6}\) |
![]() | \(\dfrac{3\sqrt{2}}{2}\) |
Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng
![]() | \(-\dfrac{1}{6}\) |
![]() | \(\dfrac{1}{6}\) |
![]() | \(\dfrac{\sqrt{17}}{4}\) |
![]() | \(-\dfrac{4}{25}\) |
Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó
![]() | \(\widehat{A}=75^\circ\) |
![]() | \(\widehat{A}=60^\circ\) |
![]() | \(\widehat{A}=45^\circ\) |
![]() | \(\widehat{A}=30^\circ\) |
Một mảnh vườn hình tam giác có ba cạnh là \(13\)m, \(14\)m và \(15\)m. Diện tích mảnh vườn đó bằng
![]() | \(84\)m\(^2\) |
![]() | \(84\)m |
![]() | \(\sqrt{84}\)m\(^2\) |
![]() | \(\sqrt{168}\)m\(^2\) |
Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?
![]() | \(\cos B+\cos C=2\cos A\) |
![]() | \(\sin B+\sin C=2\sin A\) |
![]() | \(\sin B+\sin C=2\cos A\) |
![]() | \(\sin B+\cos C=2\sin A\) |
Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng
![]() | \(115^\circ\) |
![]() | \(75^\circ\) |
![]() | \(60^\circ\) |
![]() | \(53^\circ32'\) |
Cho tam giác \(ABC\) có \(b=7\), \(c=5\), \(\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của tam giác \(ABC\) là
![]() | \(8\) |
![]() | \(\dfrac{7\sqrt{2}}{2}\) |
![]() | \(80\sqrt{3}\) |
![]() | \(8\sqrt{3}\) |
Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:
![]() | \(a^2=b^2+c^2-2bc\cos A\) |
![]() | \(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\) |
![]() | \(S=\dfrac{1}{2}ab\cos C\) |
![]() | \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\) |
Tam giác \(ABC\) có ba cạnh \(a=5\), \(b=3\), \(c=5\). Số đo góc \(\widehat{BAC}\) là
![]() | \(\widehat{A}>60^\circ\) |
![]() | \(\widehat{A}=30^\circ\) |
![]() | \(\widehat{A}=45^\circ\) |
![]() | \(\widehat{A}=90^\circ\) |
Cho tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(A\) có số đo bằng
![]() | \(30^\circ\) |
![]() | \(45^\circ\) |
![]() | \(68^\circ\) |
![]() | \(75^\circ\) |
Một ô tô đang chạy với vận tốc $15$ (m/s) thì tăng tốc chuyển động nhanh dần với gia tốc $a=3t-8$ (m/s$^2$), trong đó $t$ là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. Hỏi sau $10$ giây tăng tốc, ô tô đi được bao nhiêu mét?
![]() | $150$ |
![]() | $180$ |
![]() | $246$ |
![]() | $250$ |
Một vật chuyển động chậm dần đều với vận tốc $v(t)=150-10t$ (m/s), trong đó $t$ là thời gian tính bằng giây kể từ lúc vật bắt đầu chuyển động chậm dần đều. Trong $4$ giây trước khi dừng hẳn, vật di chuyển được một quãng đường bằng
![]() | $520$m |
![]() | $150$m |
![]() | $80$m |
![]() | $100$m |
Giả sử một vật từ trạng thái nghỉ khi $t=0$ (s) chuyển động thẳng với vận tốc $v(t)=t(5-t)$ (m/s). Tìm quãng đường vật đi được khi nó dừng lại.
![]() | $\dfrac{15}{4}$ m |
![]() | $5$ m |
![]() | $25$ m |
![]() | $\dfrac{125}{6}$ m |