Ngân hàng bài tập

Bài tập tương tự

C

Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là

\(S=\dfrac{a\cdot b\cdot c}{2R}\)
\(S=p\cdot R\)
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\)
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?

\(S=\dfrac{abc}{2R}\)
\(S=\dfrac{1}{2}ac\sin B\)
\(S=\dfrac{a+b+c}{2}r\)
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác \(ABC\) có độ dài ba cạnh là \(a=5\), \(b=7\) và \(c=10\). Phát biểu nào sau đây đúng nhất về số đo ba góc của \(ABC\)?

\(A>B>C\)
\(B< A< C\)
\(A< B< C\)
\(C< A< B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?

\(\dfrac{b^2+c^2-a^2}{2bc}\)
\(\dfrac{a^2+c^2-b^2}{2ac}\)
\(\dfrac{a^2+b^2-c^2}{2ab}\)
\(\dfrac{c}{2R}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?

\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\)
\(a=2R\sin A\)
\(a=c\dfrac{\sin A}{\sin C}\)
\(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:

\(a^2=b^2+c^2-2bc\cos A\)
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\)
\(S=\dfrac{1}{2}ab\cos C\)
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong tam giác \(ABC\) có

\(a=2R\cos A\)
\(a=2R\sin A\)
\(a=2R\tan A\)
\(a=R\sin A\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong \(\triangle ABC\) với \(BC=a\), \(AC=b\), \(AB=c\). Mệnh đề nào dưới đây sai?

\(a=\dfrac{b\sin A}{\sin B}\)
\(\sin C=\dfrac{c\sin A}{a}\)
\(a=2R\sin A\)
\(b=R\tan B\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho \(\triangle ABC\) có các cạnh \(BC=a\), \(AC=b\), \(AB=c\). Diện tích của \(\triangle ABC\) là

\(S=\dfrac{1}{2}ac\sin C\)
\(S=\dfrac{1}{2}bc\sin B\)
\(S=\dfrac{1}{2}ac\sin B\)
\(S=\dfrac{1}{2}bc\sin C\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.

$r=\dfrac{\sqrt{14}}{7}$
$r=\dfrac{2\sqrt{14}}{7}$
$r=2\sqrt{14}$
$r=\dfrac{6\sqrt{77}}{7}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng

$a^2\dfrac{\sqrt{3}}{4}$
$a^2\dfrac{\sqrt{6}}{4}$
$a^2\dfrac{\sqrt{3}}{2}$
$a^2\dfrac{\sqrt{6}}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.

$R=\dfrac{85}{8}$cm
$R=\dfrac{85}{2}$cm
$R=\dfrac{7}{4}$cm
$R=\dfrac{7}{2}$cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.

$S=16\text{ cm}^2$
$S=24\text{ cm}^2$
$S=48\text{ cm}^2$
$S=84\text{ cm}^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác $ABC$ vuông cân tại $B$, có cạnh $AB=2a$. Phát biểu nào sau đây không đúng?

$S=\dfrac{a^2}{2}$
$\widehat{A}=\widehat{C}=45^\circ$
$AB=BC=2a$
$S=2a^2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tổng ba góc trong tam giác luôn bằng

$45^\circ$
$90^\circ$
$180^\circ$
$360^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Phép vị tự \(V_{(O,3)}\) biến tam giác \(ABC\) thành tam giác \(A'B'C'\) có chu vi gấp bao nhiêu lần chu vi tam giác \(ABC\)?

\(1\)
\(2\)
\(3\)
\(6\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho tam giác đều \(ABC\). Hãy xác định góc quay \(\varphi\) của phép quay tâm \(A\) biến điểm \(B\) thành điểm \(C\).

\(\varphi=30^\circ\)
\(\varphi=90^\circ\)
\(\varphi=-120^\circ\)
\(\varphi=60^\circ\) hoặc \(\varphi=-60^\circ\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tam giác đều tâm \(O\). Với giá trị nào của \(\varphi\) thì phép quay \(\mathrm{Q}_{\left(O,\varphi\right)}\) biến tam giác đều đã cho thành chính nó?

\(\varphi=\dfrac{\pi}{3}\)
\(\varphi=\dfrac{2\pi}{3}\)
\(\varphi=\dfrac{3\pi}{2}\)
\(\varphi=\dfrac{\pi}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng

\(6,01\)
\(5,73\)
\(5,85\)
\(4,57\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng

\(7\) cm
\(49\) cm
\(11,4\) cm
\(4,44\) cm
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự