Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là
\(S=\dfrac{a\cdot b\cdot c}{2R}\) | |
\(S=p\cdot R\) | |
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\) | |
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\) |
Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?
\(S=\dfrac{abc}{2R}\) | |
\(S=\dfrac{1}{2}ac\sin B\) | |
\(S=\dfrac{a+b+c}{2}r\) | |
\(S=\sqrt{p(p-a)(p-b)(p-c)}\) |
Cho tam giác \(ABC\) có độ dài ba cạnh là \(a=5\), \(b=7\) và \(c=10\). Phát biểu nào sau đây đúng nhất về số đo ba góc của \(ABC\)?
\(A>B>C\) | |
\(B< A< C\) | |
\(A< B< C\) | |
\(C< A< B\) |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
\(\dfrac{b^2+c^2-a^2}{2bc}\) | |
\(\dfrac{a^2+c^2-b^2}{2ac}\) | |
\(\dfrac{a^2+b^2-c^2}{2ab}\) | |
\(\dfrac{c}{2R}\) |
Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?
\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\) | |
\(a=2R\sin A\) | |
\(a=c\dfrac{\sin A}{\sin C}\) | |
\(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\) |
Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:
\(a^2=b^2+c^2-2bc\cos A\) | |
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\) | |
\(S=\dfrac{1}{2}ab\cos C\) | |
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\) |
Trong tam giác \(ABC\) có
\(a=2R\cos A\) | |
\(a=2R\sin A\) | |
\(a=2R\tan A\) | |
\(a=R\sin A\) |
Trong \(\triangle ABC\) với \(BC=a\), \(AC=b\), \(AB=c\). Mệnh đề nào dưới đây sai?
\(a=\dfrac{b\sin A}{\sin B}\) | |
\(\sin C=\dfrac{c\sin A}{a}\) | |
\(a=2R\sin A\) | |
\(b=R\tan B\) |
Cho \(\triangle ABC\) có các cạnh \(BC=a\), \(AC=b\), \(AB=c\). Diện tích của \(\triangle ABC\) là
\(S=\dfrac{1}{2}ac\sin C\) | |
\(S=\dfrac{1}{2}bc\sin B\) | |
\(S=\dfrac{1}{2}ac\sin B\) | |
\(S=\dfrac{1}{2}bc\sin C\) |
Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
$r=\dfrac{\sqrt{14}}{7}$ | |
$r=\dfrac{2\sqrt{14}}{7}$ | |
$r=2\sqrt{14}$ | |
$r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
$a^2\dfrac{\sqrt{3}}{4}$ | |
$a^2\dfrac{\sqrt{6}}{4}$ | |
$a^2\dfrac{\sqrt{3}}{2}$ | |
$a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
$R=\dfrac{85}{8}$cm | |
$R=\dfrac{85}{2}$cm | |
$R=\dfrac{7}{4}$cm | |
$R=\dfrac{7}{2}$cm |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
$S=16\text{ cm}^2$ | |
$S=24\text{ cm}^2$ | |
$S=48\text{ cm}^2$ | |
$S=84\text{ cm}^2$ |
Tam giác $ABC$ vuông cân tại $B$, có cạnh $AB=2a$. Phát biểu nào sau đây không đúng?
$S=\dfrac{a^2}{2}$ | |
$\widehat{A}=\widehat{C}=45^\circ$ | |
$AB=BC=2a$ | |
$S=2a^2$ |
Tổng ba góc trong tam giác luôn bằng
$45^\circ$ | |
$90^\circ$ | |
$180^\circ$ | |
$360^\circ$ |
Phép vị tự \(V_{(O,3)}\) biến tam giác \(ABC\) thành tam giác \(A'B'C'\) có chu vi gấp bao nhiêu lần chu vi tam giác \(ABC\)?
\(1\) | |
\(2\) | |
\(3\) | |
\(6\) |
Cho tam giác đều \(ABC\). Hãy xác định góc quay \(\varphi\) của phép quay tâm \(A\) biến điểm \(B\) thành điểm \(C\).
\(\varphi=30^\circ\) | |
\(\varphi=90^\circ\) | |
\(\varphi=-120^\circ\) | |
\(\varphi=60^\circ\) hoặc \(\varphi=-60^\circ\) |
Cho tam giác đều tâm \(O\). Với giá trị nào của \(\varphi\) thì phép quay \(\mathrm{Q}_{\left(O,\varphi\right)}\) biến tam giác đều đã cho thành chính nó?
\(\varphi=\dfrac{\pi}{3}\) | |
\(\varphi=\dfrac{2\pi}{3}\) | |
\(\varphi=\dfrac{3\pi}{2}\) | |
\(\varphi=\dfrac{\pi}{2}\) |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
\(6,01\) | |
\(5,73\) | |
\(5,85\) | |
\(4,57\) |
Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
\(7\) cm | |
\(49\) cm | |
\(11,4\) cm | |
\(4,44\) cm |