Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
\(7\) cm | |
\(49\) cm | |
\(11,4\) cm | |
\(4,44\) cm |
Cho tam giác \(ABC\) có \(AB=3\), \(AC=4\) và \(\tan A=2\sqrt{2}\). Tính cạnh \(BC\).
\(\sqrt{13}\) | |
\(3\sqrt{2}\) | |
\(4\sqrt{2}\) | |
\(\sqrt{17}\) |
Hai chiếc tàu thủy cùng xuất phát từ vị trí \(A\), đi thẳng theo hai hướng tạo với nhau một góc \(60^\circ\). Tàu thứ nhất chạy với tốc độ \(30\)km/h, tàu thứ hai chạy với tốc độ \(40\)km/h. Hỏi sau \(2\) giờ, khoảng cách giữa hai chiếc tàu là bao nhiêu km?
\(10\sqrt{13}\) | |
\(15\sqrt{13}\) | |
\(20\sqrt{13}\) | |
\(15\) |
Tam giác \(ABC\) có \(a=8\), \(c=3\), \(\widehat{B}=60^\circ\). Độ dài cạnh \(b\) bằng bao nhiêu?
\(49\) | |
\(\sqrt{97}\) | |
\(7\) | |
\(\sqrt{61}\) |
Trong tam giác \(ABC\) có \(AB=2\)cm, \(AC=1\)cm, \(\widehat{A}=60^\circ\). Khi đó độ dài cạnh \(BC\) là
\(1\)cm | |
\(2\)cm | |
\(\sqrt{3}\)cm | |
\(\sqrt{5}\)cm |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
\(\dfrac{b^2+c^2-a^2}{2bc}\) | |
\(\dfrac{a^2+c^2-b^2}{2ac}\) | |
\(\dfrac{a^2+b^2-c^2}{2ab}\) | |
\(\dfrac{c}{2R}\) |
Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).
\(\dfrac{2\sqrt{6}}{3}\) | |
\(\dfrac{3\sqrt{6}}{2}\) | |
\(\sqrt{6}\) | |
\(\dfrac{3\sqrt{2}}{2}\) |
Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng
\(-\dfrac{1}{6}\) | |
\(\dfrac{1}{6}\) | |
\(\dfrac{\sqrt{17}}{4}\) | |
\(-\dfrac{4}{25}\) |
Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó
\(\widehat{A}=75^\circ\) | |
\(\widehat{A}=60^\circ\) | |
\(\widehat{A}=45^\circ\) | |
\(\widehat{A}=30^\circ\) |
Cho tam giác \(ABC\) thỏa mãn \(b+c=2a\). Mệnh đề nào dưới đây là đúng?
\(\cos B+\cos C=2\cos A\) | |
\(\sin B+\sin C=2\sin A\) | |
\(\sin B+\sin C=2\cos A\) | |
\(\sin B+\cos C=2\sin A\) |
Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng
\(115^\circ\) | |
\(75^\circ\) | |
\(60^\circ\) | |
\(53^\circ32'\) |
Cho tam giác \(ABC\) có \(b=7\), \(c=5\), \(\cos A=\dfrac{3}{5}\). Đường cao \(h_a\) của tam giác \(ABC\) là
\(8\) | |
\(\dfrac{7\sqrt{2}}{2}\) | |
\(80\sqrt{3}\) | |
\(8\sqrt{3}\) |
Cho tam giác \(ABC\) với \(a,\,b,\,c\) lần lượt là độ dài các cạnh \(BC\), \(CA\), \(AB\). Chọn mệnh đề sai trong các mệnh đề sau:
\(a^2=b^2+c^2-2bc\cos A\) | |
\(m_a^2=\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\) | |
\(S=\dfrac{1}{2}ab\cos C\) | |
\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\) |
Tam giác \(ABC\) có ba cạnh \(a=5\), \(b=3\), \(c=5\). Số đo góc \(\widehat{BAC}\) là
\(\widehat{A}>60^\circ\) | |
\(\widehat{A}=30^\circ\) | |
\(\widehat{A}=45^\circ\) | |
\(\widehat{A}=90^\circ\) |
Cho tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(A\) có số đo bằng
\(30^\circ\) | |
\(45^\circ\) | |
\(68^\circ\) | |
\(75^\circ\) |
Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
$r=\dfrac{\sqrt{14}}{7}$ | |
$r=\dfrac{2\sqrt{14}}{7}$ | |
$r=2\sqrt{14}$ | |
$r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
$a^2\dfrac{\sqrt{3}}{4}$ | |
$a^2\dfrac{\sqrt{6}}{4}$ | |
$a^2\dfrac{\sqrt{3}}{2}$ | |
$a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
$R=\dfrac{85}{8}$cm | |
$R=\dfrac{85}{2}$cm | |
$R=\dfrac{7}{4}$cm | |
$R=\dfrac{7}{2}$cm |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
$S=16\text{ cm}^2$ | |
$S=24\text{ cm}^2$ | |
$S=48\text{ cm}^2$ | |
$S=84\text{ cm}^2$ |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
\(6,01\) | |
\(5,73\) | |
\(5,85\) | |
\(4,57\) |