Cho tam giác \(ABC\) có độ dài ba cạnh là \(a=5\), \(b=7\) và \(c=10\). Phát biểu nào sau đây đúng nhất về số đo ba góc của \(ABC\)?
\(A>B>C\) | |
\(B< A< C\) | |
\(A< B< C\) | |
\(C< A< B\) |
Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng
\(-\dfrac{1}{6}\) | |
\(\dfrac{1}{6}\) | |
\(\dfrac{\sqrt{17}}{4}\) | |
\(-\dfrac{4}{25}\) |
Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó
\(\widehat{A}=75^\circ\) | |
\(\widehat{A}=60^\circ\) | |
\(\widehat{A}=45^\circ\) | |
\(\widehat{A}=30^\circ\) |
Tam giác \(ABC\) có ba cạnh \(a,\,b,\,c\) thỏa mãn điều kiện $$(a+b+c)(a+b-c)=3ab.$$Khi đó số đo góc \(\widehat{C}\) là
\(120^\circ\) | |
\(30^\circ\) | |
\(45^\circ\) | |
\(60^\circ\) |
Cho tam giác \(ABC\) có độ dài ba cạnh là \(AB=2\), \(BC=3\), \(CA=4\). Tính số đo góc \(\widehat{ABC}\) (chọn kết quả gần đúng nhất).
\(60^\circ\) | |
\(104^\circ29'\) | |
\(75^\circ31'\) | |
\(120^\circ\) |
Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng
\(115^\circ\) | |
\(75^\circ\) | |
\(60^\circ\) | |
\(53^\circ32'\) |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng
$3a^3$ | |
$a^3$ | |
$12\sqrt{2}a^3$ | |
$4\sqrt{2}a^3$ |
Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
$r=\dfrac{\sqrt{14}}{7}$ | |
$r=\dfrac{2\sqrt{14}}{7}$ | |
$r=2\sqrt{14}$ | |
$r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
$a^2\dfrac{\sqrt{3}}{4}$ | |
$a^2\dfrac{\sqrt{6}}{4}$ | |
$a^2\dfrac{\sqrt{3}}{2}$ | |
$a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
$R=\dfrac{85}{8}$cm | |
$R=\dfrac{85}{2}$cm | |
$R=\dfrac{7}{4}$cm | |
$R=\dfrac{7}{2}$cm |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
$S=16\text{ cm}^2$ | |
$S=24\text{ cm}^2$ | |
$S=48\text{ cm}^2$ | |
$S=84\text{ cm}^2$ |
Tổng ba góc trong tam giác luôn bằng
$45^\circ$ | |
$90^\circ$ | |
$180^\circ$ | |
$360^\circ$ |
Ba góc của một tam giác vuông tạo thành một cấp số cộng. Hai góc nhọn của tam giác đó có số đo là
\(20^\circ\) và \(70^\circ\) | |
\(45^\circ\) và \(45^\circ\) | |
\(20^\circ\) và \(45^\circ\) | |
\(30^\circ\) và \(60^\circ\) |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
\(6,01\) | |
\(5,73\) | |
\(5,85\) | |
\(4,57\) |
Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
\(7\) cm | |
\(49\) cm | |
\(11,4\) cm | |
\(4,44\) cm |
Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là
\(S=\dfrac{a\cdot b\cdot c}{2R}\) | |
\(S=p\cdot R\) | |
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\) | |
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\) |
Tam giác \(MNK\) có độ dài ba cạnh lần lượt là \(MN=13\), \(NK=14\) và \(KM=15\). Chu vi của \(MNK\) bằng
\(21\) | |
\(42\) | |
\(14\) | |
\(84\) |
Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?
\(S=\dfrac{abc}{2R}\) | |
\(S=\dfrac{1}{2}ac\sin B\) | |
\(S=\dfrac{a+b+c}{2}r\) | |
\(S=\sqrt{p(p-a)(p-b)(p-c)}\) |
Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là
\(\dfrac{\sqrt{3}}{2}\) | |
\(\dfrac{3}{8}\) | |
\(\dfrac{4}{5}\) | |
\(\dfrac{8}{9}\) |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
\(\dfrac{b^2+c^2-a^2}{2bc}\) | |
\(\dfrac{a^2+c^2-b^2}{2ac}\) | |
\(\dfrac{a^2+b^2-c^2}{2ab}\) | |
\(\dfrac{c}{2R}\) |