Cho tam giác $ABC$ có độ dài ba cạnh lần lượt là $3$, $5$, $6$. Tính bán kính đường tròn nội tiếp của $ABC$.
$r=\dfrac{\sqrt{14}}{7}$ | |
$r=\dfrac{2\sqrt{14}}{7}$ | |
$r=2\sqrt{14}$ | |
$r=\dfrac{6\sqrt{77}}{7}$ |
Tam giác $HPS$ đều, cạnh $PS=a\sqrt{2}$. $S_{HPS}$ bằng
$a^2\dfrac{\sqrt{3}}{4}$ | |
$a^2\dfrac{\sqrt{6}}{4}$ | |
$a^2\dfrac{\sqrt{3}}{2}$ | |
$a^2\dfrac{\sqrt{6}}{2}$ |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính bán kính đường tròn ngoại tiếp.
$R=\dfrac{85}{8}$cm | |
$R=\dfrac{85}{2}$cm | |
$R=\dfrac{7}{4}$cm | |
$R=\dfrac{7}{2}$cm |
Tam giác $ABC$ có độ dài ba cạnh lần lượt là $21$cm, $17$cm và $10$cm. Tính diện tích tam giác.
$S=16\text{ cm}^2$ | |
$S=24\text{ cm}^2$ | |
$S=48\text{ cm}^2$ | |
$S=84\text{ cm}^2$ |
Phép vị tự \(V_{(O,3)}\) biến tam giác \(ABC\) thành tam giác \(A'B'C'\) có chu vi gấp bao nhiêu lần chu vi tam giác \(ABC\)?
\(1\) | |
\(2\) | |
\(3\) | |
\(6\) |
Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, các nhà khảo cổ muốn khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy \(3\) điểm trên chiếc đĩa và tiến hành đo đạc thu được kết quả như hình vẽ (\(AB=4,3\) cm; \(BC=3,7\) cm; \(CA=7,5\) cm). Bán kính của chiếc đĩa này bằng
\(6,01\) | |
\(5,73\) | |
\(5,85\) | |
\(4,57\) |
Tam giác \(ABC\) có \(AB=5\) cm, \(AC=8\) cm và góc \(\widehat{A}=60^\circ\). Độ dài cạnh \(BC\) bằng
\(7\) cm | |
\(49\) cm | |
\(11,4\) cm | |
\(4,44\) cm |
Cho \(\triangle ABC\) có ba cạnh lần lượt là \(a,\,b,\,c\). Công thức tính diện tích \(\triangle ABC\) là
\(S=\dfrac{a\cdot b\cdot c}{2R}\) | |
\(S=p\cdot R\) | |
\(S=\dfrac{1}{2}a\cdot b\cdot\cos C\) | |
\(S=\dfrac{1}{2}a\cdot c\cdot\sin B\) |
Tam giác \(HPS\) có \(\widehat{PHS}=51^\circ\) và \(\widehat{PSH}=15^\circ\) thì \(\widehat{HPS}\) bằng
\(66^\circ\) | |
\(144^\circ\) | |
\(114^\circ\) | |
\(215^\circ\) |
Cho tam giác \(ABC\). Kết quả nào sau đây không đúng?
\(S=\dfrac{abc}{2R}\) | |
\(S=\dfrac{1}{2}ac\sin B\) | |
\(S=\dfrac{a+b+c}{2}r\) | |
\(S=\sqrt{p(p-a)(p-b)(p-c)}\) |
Tam giác \(ABC\) có \(AB=8\)cm, \(AC=18\)cm và diện tích bằng \(64\)cm\(^2\). Giá trị \(\sin A\) là
\(\dfrac{\sqrt{3}}{2}\) | |
\(\dfrac{3}{8}\) | |
\(\dfrac{4}{5}\) | |
\(\dfrac{8}{9}\) |
Cho tam giác \(ABC\) có độ dài ba cạnh là \(a=5\), \(b=7\) và \(c=10\). Phát biểu nào sau đây đúng nhất về số đo ba góc của \(ABC\)?
\(A>B>C\) | |
\(B< A< C\) | |
\(A< B< C\) | |
\(C< A< B\) |
Cho tam giác \(ABC\). Biểu thức nào dưới đây dùng để tính \(\cos C\)?
\(\dfrac{b^2+c^2-a^2}{2bc}\) | |
\(\dfrac{a^2+c^2-b^2}{2ac}\) | |
\(\dfrac{a^2+b^2-c^2}{2ab}\) | |
\(\dfrac{c}{2R}\) |
Gọi \(R\) là bán kính đường tròn ngoại tiếp tam giác \(ABC\). Khẳng định nào sau đây sai?
\(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R\) | |
\(a=2R\sin A\) | |
\(a=c\dfrac{\sin A}{\sin C}\) | |
\(\dfrac{a}{b}=\dfrac{\sin B}{\sin A}\) |
Tam giác \(ABC\) có các góc \(\widehat{B}=30^\circ\), \(\widehat{C}=45^\circ\), cạnh \(AB=3\). Tính cạnh \(AC\).
\(\dfrac{2\sqrt{6}}{3}\) | |
\(\dfrac{3\sqrt{6}}{2}\) | |
\(\sqrt{6}\) | |
\(\dfrac{3\sqrt{2}}{2}\) |
Tam giác có ba cạnh là \(3\), \(8\), \(9\). Góc lớn nhất có cosin bằng
\(-\dfrac{1}{6}\) | |
\(\dfrac{1}{6}\) | |
\(\dfrac{\sqrt{17}}{4}\) | |
\(-\dfrac{4}{25}\) |
Cho tam giác \(ABC\) có \(AB=3\), \(AC=4\) và \(\tan A=2\sqrt{2}\). Tính cạnh \(BC\).
\(\sqrt{13}\) | |
\(3\sqrt{2}\) | |
\(4\sqrt{2}\) | |
\(\sqrt{17}\) |
Cho tam giác \(ABC\) có \(\widehat{A}=60^\circ\), \(AC=10\), \(AB=6\). Tính cạnh \(BC\).
\(76\) | |
\(2\sqrt{19}\) | |
\(14\) | |
\(6\sqrt{2}\) |
Chọn đáp án sai: Một tam giác giải được nếu biết
Độ dài \(3\) cạnh | |
Độ dài \(2\) cạnh và một góc bất kỳ | |
Số đo \(3\) góc | |
Độ dài \(1\) cạnh và \(2\) góc bất kỳ |
Cho tam giác \(ABC\) thỏa mãn \(b^2+c^2-a^2=\sqrt{3}bc\). Khi đó
\(\widehat{A}=75^\circ\) | |
\(\widehat{A}=60^\circ\) | |
\(\widehat{A}=45^\circ\) | |
\(\widehat{A}=30^\circ\) |