Có bao nhiêu số nguyên $x$ thỏa mãn $\left(4^x-5\cdot2^{x+2}+64\right)\sqrt{2-\log(4x)}\geq0$?
$22$ | |
$25$ | |
$23$ | |
$24$ |
Tập nghiệm của bất phương trình \(\sqrt{x}+3x-2<2x+\sqrt{x}+1\) là
\((-\infty;3)\) | |
\(x<3\) | |
\((0;3)\) | |
\([0;3)\) |
Tập nghiệm \(S\) của bất phương trình \((x-3)\sqrt{x-2}\geq0\) là
\(S=[3;+\infty)\) | |
\(S=(3;+\infty)\) | |
\(S=\{2\}\cup[3;+\infty)\) | |
\(S=\{2\}\cup(3;+\infty)\) |
Tổng các nghiệm nguyên của bất phương trình \(\dfrac{x-2}{\sqrt{x-4}}\leq\dfrac{4}{\sqrt{x-4}}\) bằng
\(15\) | |
\(11\) | |
\(26\) | |
\(0\) |
Tập nghiệm của bất phương trình \(x+\sqrt{x-2}\leq2+\sqrt{x-2}\) là
\(S=\varnothing\) | |
\(S=(-\infty;2]\) | |
\(S=\{2\}\) | |
\(S=[2;+\infty)\) |
Tập nghiệm của bất phương trình \(\sqrt{x-2019}>\sqrt{2019-x}\) là
\([2019;+\infty)\) | |
\((-\infty;2019)\) | |
\(\{2019\}\) | |
\(\varnothing\) |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
$728$ | |
$726$ | |
$725$ | |
$729$ |
Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là
$S=(-\infty;11]$ | |
$S=(2;11]$ | |
$S=(2;8]$ | |
$S=(-\infty;8]$ |
Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là
$(4;+\infty)$ | |
$(-\infty;-1)\cup(4;+\infty)$ | |
$(-1;4)$ | |
$(-\infty;-1)$ |
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
$89$ | |
$48$ | |
$90$ | |
$49$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
$193$ | |
$92$ | |
$186$ | |
$184$ |
Tập nghiệm của bất phương trình $\log(x-2)>0$ là
$(2;3)$ | |
$(-\infty;3)$ | |
$(3;+\infty)$ | |
$(12;+\infty)$ |
Tập nghiệm của bất phương trình $2^{x+1}< 4$ là
$(-\infty;1]$ | |
$(1;+\infty)$ | |
$[1;+\infty)$ | |
$(-\infty;1)$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tập nghiệm của bất phương trình $3^x< 2$ là
$\left(-\infty;\log_32\right)$ | |
$\left(\log_32;+\infty\right)$ | |
$\left(-\infty;\log_23\right)$ | |
$\left(\log_23;+\infty\right)$ |
Tập nghiệm của bất phương trình $\ln^2x+2\ln{x}-3< 0$ là
$\left(\mathrm{e};\mathrm{e}^3\right)$ | |
$\left(\mathrm{e};+\infty\right)$ | |
$\left(-\infty;\dfrac{1}{\mathrm{e}^3}\right)\cup\left(\mathrm{e};+\infty\right)$ | |
$\left(\dfrac{1}{\mathrm{e}^3};\mathrm{e}\right)$ |