Có bao nhiêu số nguyên $x$ thỏa mãn $\left(4^x-5\cdot2^{x+2}+64\right)\sqrt{2-\log(4x)}\geq0$?
![]() | $22$ |
![]() | $25$ |
![]() | $23$ |
![]() | $24$ |
Tập nghiệm của bất phương trình \(\sqrt{x}+3x-2<2x+\sqrt{x}+1\) là
![]() | \((-\infty;3)\) |
![]() | \(x<3\) |
![]() | \((0;3)\) |
![]() | \([0;3)\) |
Tập nghiệm \(S\) của bất phương trình \(x+\sqrt{x}<\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\) là
![]() | \(S=(-\infty;3)\) |
![]() | \(S=(3;+\infty)\) |
![]() | \(S=[3;+\infty)\) |
![]() | \(S=(-\infty;3]\) |
Tổng các nghiệm nguyên của bất phương trình \(\dfrac{x-2}{\sqrt{x-4}}\leq\dfrac{4}{\sqrt{x-4}}\) bằng
![]() | \(15\) |
![]() | \(11\) |
![]() | \(26\) |
![]() | \(0\) |
Tập nghiệm của bất phương trình \(x+\sqrt{x-2}\leq2+\sqrt{x-2}\) là
![]() | \(S=\varnothing\) |
![]() | \(S=(-\infty;2]\) |
![]() | \(S=\{2\}\) |
![]() | \(S=[2;+\infty)\) |
Tập nghiệm của bất phương trình \(\sqrt{x-2019}>\sqrt{2019-x}\) là
![]() | \([2019;+\infty)\) |
![]() | \((-\infty;2019)\) |
![]() | \(\{2019\}\) |
![]() | \(\varnothing\) |
Có bao nhiêu số nguyên $x$ thoả mãn $\big(7^x-49\big)\big(\log_3^2x-7\log_3x+6\big)< 0$?
![]() | $728$ |
![]() | $726$ |
![]() | $725$ |
![]() | $729$ |
Tập nghiệm của bất phương trình $\log_3(x-2)\le2$ là
![]() | $S=(-\infty;11]$ |
![]() | $S=(2;11]$ |
![]() | $S=(2;8]$ |
![]() | $S=(-\infty;8]$ |
Tập nghiệm bất phương trình $2^{x^2-3x}< 16$ là
![]() | $(4;+\infty)$ |
![]() | $(-\infty;-1)\cup(4;+\infty)$ |
![]() | $(-1;4)$ |
![]() | $(-\infty;-1)$ |
Giải bất phương trình $\dfrac{x+11}{5-6x}$.
Giải bất phương trình $2x^2+5x+2\leq0$.
Có bao nhiêu cặp số nguyên $(x;y)$ thỏa mãn $\log_3\big(x^2+y^2+x\big)+\log_2\big(x^2+y^2\big)\leq\log_3x+\log_2\big(x^2+y^2+24x\big)?$
![]() | $89$ |
![]() | $48$ |
![]() | $90$ |
![]() | $49$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\log_3\dfrac{x^2-16}{343}< \log_7\dfrac{x^2-16}{27}$?
![]() | $193$ |
![]() | $92$ |
![]() | $186$ |
![]() | $184$ |
Tập nghiệm của bất phương trình $\log(x-2)>0$ là
![]() | $(2;3)$ |
![]() | $(-\infty;3)$ |
![]() | $(3;+\infty)$ |
![]() | $(12;+\infty)$ |
Tập nghiệm của bất phương trình $2^{x+1}< 4$ là
![]() | $(-\infty;1]$ |
![]() | $(1;+\infty)$ |
![]() | $[1;+\infty)$ |
![]() | $(-\infty;1)$ |
Giải bất phương trình $\dfrac{1}{x-1}+\dfrac{2}{x-2}>0$.
Giải bất phương trình $\dfrac{x^2-x-6}{2-x}\geq0$.
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Có bao nhiêu số nguyên $x$ thỏa mãn $\left(3^{x^2}-9^x\right)\left[\log_3(x+25)-3\right]\leq0$?
![]() | $24$ |
![]() | Vô số |
![]() | $26$ |
![]() | $25$ |
Tập nghiệm của bất phương trình $3^x< 2$ là
![]() | $\left(-\infty;\log_32\right)$ |
![]() | $\left(\log_32;+\infty\right)$ |
![]() | $\left(-\infty;\log_23\right)$ |
![]() | $\left(\log_23;+\infty\right)$ |