Giả sử phương trình $2x^2-4ax-1=0$ có hai nghiệm $x_1,\,x_2$. Tính giá trị của biểu thức $T=\left|x_1-x_2\right|$.
![]() | $T=\dfrac{4a^2+2}{3}$ |
![]() | $T=\sqrt{4a^2+2}$ |
![]() | $T=\dfrac{\sqrt{a^2+8}}{2}$ |
![]() | $T=\dfrac{\sqrt{a^2+8}}{4}$ |
Biết rằng với mọi \(a,\,b\in\mathbb{R}\), phương trình \(\log_2^2x-a\log_2x-3^b=0\) luôn có hai nghiệm phân biệt \(x_1,\,x_2\). Khi đó tích \(x_1\cdot x_2\) bằng
![]() | \(3^a\) |
![]() | \(a\) |
![]() | \(b\log_23\) |
![]() | \(2^a\) |
Tính tích các nghiệm của phương trình $$\log_3^2x-2\log_3x-7=0$$
![]() | \(2\) |
![]() | \(-7\) |
![]() | \(1\) |
![]() | \(9\) |
Biết rằng phương trình \(\log_2^2(2x)-5\log_2x=0\) có hai nghiệm phân biệt \(x_1,\,x_2\). Tính \(x_1\cdot x_2\).
![]() | \(x_1\cdot x_2=8\) |
![]() | \(x_1\cdot x_2=5\) |
![]() | \(x_1\cdot x_2=3\) |
![]() | \(x_1\cdot x_2=1\) |
Tìm tất cả giá trị của tham số \(m\) để phương trình \(x^2+2mx-m-1=0\) có 2 nghiệm phân biệt \(x_1,\,x_2\) sao cho \(x_1^2+x_2^2=2\).
![]() | \(\left[\begin{array}{l}m=-\dfrac{1}{2}\\ m=0\end{array}\right.\) |
![]() | \(m=0\) |
![]() | \(m=-\dfrac{1}{2}\) |
![]() | \(\left[\begin{array}{l}m=\dfrac{1}{2}\\ m=0\end{array}\right.\) |
Giả sử \(x_1\) và \(x_2\) là hai nghiệm của phương trình \(x^2+3x-10=0\). Giá trị của tổng \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\) là
![]() | \(\dfrac{3}{10}\) |
![]() | \(-\dfrac{10}{3}\) |
![]() | \(-\dfrac{3}{10}\) |
![]() | \(\dfrac{10}{3}\) |
Gọi $x_1,\,x_2$ là các nghiệm của phương trình $2\log2+2\log(x+2)=\log x+4\log3$. Tích $x_1x_2$ bằng
![]() | $\dfrac{15}{2}$ |
![]() | $\dfrac{9}{2}$ |
![]() | $6$ |
![]() | $4$ |
Tích tất cả các nghiệm của phương trình $\ln^2x+2\ln x-3=0$ bằng
![]() | $\dfrac{1}{\mathrm{e}^3}$ |
![]() | $-2$ |
![]() | $-3$ |
![]() | $\dfrac{1}{\mathrm{e}^2}$ |
Biết phương trình $z^2+mz+n=0$ ($m,\,n\in\mathbb{R}$) có một nghiệm là $1-3i$. Tính $n+3m$.
![]() | $4$ |
![]() | $3$ |
![]() | $16$ |
![]() | $6$ |
Gọi $z_1,\,z_2$ là hai nghiệm phân biệt của phương trình $z^2+3z+4=0$ trên tập số phức. Tính giá trị của biểu thức $P=\left|z_1\right|+\left|z_2\right|$.
![]() | $P=4\sqrt{2}$ |
![]() | $P=2\sqrt{2}$ |
![]() | $P=4$ |
![]() | $P=2$ |
Phương trình $ax^2+bx+c=0\,\,\left(a\neq0\right)$ có hai nghiệm trái dấu khi và chỉ khi
![]() | $P>0$ |
![]() | $P<0$ |
![]() | $\begin{cases}\Delta&>0\\ S&>0\end{cases}$ |
![]() | $\begin{cases}\Delta&>0\\ S&<0\end{cases}$ |
Phương trình $ax^2+bx+c=0\,\,\left(a\neq0\right)$ có hai nghiệm phân biệt cùng dấu khi và chỉ khi
![]() | $\begin{cases}\Delta&>0\\ P&>0\end{cases}$ |
![]() | $\begin{cases}\Delta&\geq0\\ P&>0\end{cases}$ |
![]() | $\begin{cases}\Delta&>0\\ S&>0\end{cases}$ |
![]() | $\begin{cases}\Delta&>0\\ S&<0\end{cases}$ |
Phương trình $\left(m-1\right)x^2+6x-1=0$ có hai nghiệm phân biệt khi
![]() | $m>-8$ |
![]() | $m>-\dfrac{5}{4}$ |
![]() | $\begin{cases}m>-8\\ m\neq1\end{cases}$ |
![]() | $\begin{cases}m>-\dfrac{5}{4}\\ m\neq1\end{cases}$ |
Tìm các giá trị của $m$ để phương trình $-2x^2-4x+3=m$ có nghiệm.
![]() | $1\leq m\leq5$ |
![]() | $-4\leq m\leq0$ |
![]() | $0\leq m\leq4$ |
![]() | $m\leq 5$ |
Để phương trình \((m-1)x^2+3mx+m^2-m-6=0\) có hai nghiệm trái dấu thì
![]() | \(m\in(-\infty;-2)\cup(1;3)\) |
![]() | \(m\in(-\infty;-2]\cup[1;3]\) |
![]() | \(m\in(-2;1)\cup(3;+\infty)\) |
![]() | \(m\in[-2;1]\cup[3;+\infty)\) |
Cho \(x,\,y\) là các số thực dương thỏa mãn $$\log_9x=\log_6y=\log_4\left(2x+y\right)$$Giá trị của \(\dfrac{x}{y}\) bằng
![]() | \(2\) |
![]() | \(\dfrac{1}{2}\) |
![]() | \(\log_2\left(\dfrac{3}{2}\right)\) |
![]() | \(\log_{\tfrac{3}{2}}2\) |
Tích các nghiệm của phương trình \(3^{x^2-3x+1}=81\) bằng
![]() | \(3\) |
![]() | \(4\) |
![]() | \(-3\) |
![]() | \(5\) |
Tính tổng các nghiệm của phương trình $$\log_6\left(3\cdot4^x+2\cdot9^x\right)=x+1$$
![]() | \(2\) |
![]() | \(1\) |
![]() | \(0\) |
![]() | \(3\) |
Tính tổng các nghiệm của phương trình $$3^{2x}-2\cdot3^{x+2}+27=0$$
![]() | \(9\) |
![]() | \(18\) |
![]() | \(3\) |
![]() | \(27\) |
Phương trình \(\log_{2020}^2x+4\log_{\tfrac{1}{2020}}x+3=0\) có hai nghiệm \(x_1,\;x_2\). Tính giá trị của biểu thức \(x_1\cdot x_2\).
![]() | \(2020\) |
![]() | \(2020^3\) |
![]() | \(2020^4\) |
![]() | \(2020^2\) |