Trong không gian \(Oxyz\), cho hai điểm \(A(0;-2;3)\) và \(B(1;0;-1)\). Gọi \(M\) là trung điểm của đoạn thẳng \(AB\). Khẳng định nào sau đây là đúng?
\(\overrightarrow{BA}=(-1;-2;-4)\) | |
\(AB=\sqrt{21}\) | |
\(M(1;-1;1)\) | |
\(\overrightarrow{AB}=(-1;-2;4)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(1;-2;-1)\), \(B(1;4;3)\). Độ dài đoạn thẳng \(AB\) bằng
\(2\sqrt{13}\) | |
\(\sqrt{6}\) | |
\(3\) | |
\(2\sqrt{3}\) |
Trong không gian \(Oxyz\), cho hai vectơ \(\overrightarrow{u}=(1;2;3)\) và \(\overrightarrow{v}=(-5;1;1)\). Khẳng định nào đúng?
\(\left|\overrightarrow{u}\right|=\left|\overrightarrow{v}\right|\) | |
\(\overrightarrow{u}=\overrightarrow{v}\) | |
\(\overrightarrow{u}\bot\overrightarrow{v}\) | |
\(\overrightarrow{u}\) cùng phương với \(\overrightarrow{v}\) |
Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(M(3;0;0)\), \(N(0;0;4)\). Tính độ dài đoạn thẳng \(MN\).
\(MN=7\) | |
\(MN=1\) | |
\(MN=5\) | |
\(MN=10\) |
Trong không gian \(Oxyz\), cho vectơ \(\vec{a}=(2;-2;-4)\), \(\vec{b}=(1;-1;1)\). Mệnh đề nào dưới đây sai?
\(\vec{a}+\vec{b}=(3;-3;-3)\) | |
\(\vec{a}\) và \(\vec{b}\) cùng phương | |
\(\left|\vec{b}\right|=\sqrt{3}\) | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian \(Oxyz\), cho hai điểm \(A(2;-1;4)\) và \(B(-2;2;-6)\). Tính độ dài đoạn thẳng \(AB\).
\(AB=5\sqrt{5}\) | |
\(AB=\sqrt{21}+\sqrt{44}\) | |
\(AB=\sqrt{65}\) | |
\(AB=\sqrt{5}\) |
Trong không gian \(Oxyz\), cho ba vectơ \(\vec{a}=(-1;1;0)\), \(\vec{b}=(1;1;0)\), \(\vec{c}=(1;1;1)\). Trong các mệnh đề sau, mệnh đề nào sai?
\(\left|\vec{a}\right|=\sqrt{2}\) | |
\(\vec{c}\bot\vec{b}\) | |
\(\left|\vec{c}\right|=\sqrt{3}\) | |
\(\vec{a}\bot\vec{b}\) |
Trong không gian $Oxyz$, độ dài của vectơ $\overrightarrow{u}=(1;-2;2)$ là
$3$ | |
$5$ | |
$1$ | |
$9$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;1;0)$, $B(0;3;3)$. Mệnh đề nào sau đây đúng?
$\overrightarrow{AB}=(-1;2;3)$ | |
$\overrightarrow{AB}=(1;2;3)$ | |
$\overrightarrow{AB}=(-1;4;3)$ | |
$\overrightarrow{AB}=(0;3;0)$ |
Trong không gian $Oxyz$, cho hai điểm $A\left(1;2;-4\right)$ và $B\left(-3;2;2\right)$. Toạ độ của $\overrightarrow{AB}$ là
$\left(-2;4;-2\right)$ | |
$\left(-4;0;6\right)$ | |
$\left(4;0;-6\right)$ | |
$\left(-1;2;-1\right)$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;1;-2)$ và $B(3;0;1)$. Vectơ $\overrightarrow{AB}$ có tọa độ là
$(4;1;-1)$ | |
$\left(2;\dfrac{1}{2};-\dfrac{1}{2}\right)$ | |
$(2;-1;3)$ | |
$(-2;1;-3)$ |
Trong không gian $Oxyz$, vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ $O$ và điểm $M(1;-2;1)$?
$\overrightarrow{u_1}=(1;1;1)$ | |
$\overrightarrow{u_2}=(1;2;1)$ | |
$\overrightarrow{u_3}=(0;1;0)$ | |
$\overrightarrow{u_1}=(1;-2;1)$ |
Trong không gian \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=\left(3;0;1\right)\), \(\overrightarrow{b}=\left(1;-1;-2\right)\), \(\overrightarrow{c}=\left(2;1;-1\right)\). Tính \(T=\overrightarrow{a}\cdot\left(\overrightarrow{b}+\overrightarrow{c}\right)\).
\(T=3\) | |
\(T=6\) | |
\(T=0\) | |
\(T=9\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho ba vectơ \(\overrightarrow{a}=(1;2;-2)\), \(\overrightarrow{b}=(-4;0;1)\) và \(\overrightarrow{c}=(0;3;3)\). Tính \(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot\overrightarrow{c}\).
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=3\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=9\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=0\) | |
\(\left(\overrightarrow{a}+\overrightarrow{b}\right)\cdot{\overrightarrow{c}}=-10\) |
Trong không gian với hệ toạ độ \(Oxyz\) cho \(A\left(x_A;y_A;z_A\right)\), \(B\left(x_B;y_B;z_B\right)\). Công thức nào dưới đây là đúng.
\(\overrightarrow{AB}=\left(x_A-x_B;y_A-y_B;z_A-z_B\right)\) | |
\(\overrightarrow{BA}=\left(x_A+x_B;y_A+y_B;z_A+z_B\right)\) | |
\(AB=\sqrt{\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2}\) | |
\(\left|\overrightarrow{AB}\right|=\left(x_B-x_A\right)^2+\left(y_B-y_A\right)^2+\left(z_B-z_A\right)^2\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:
\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\) | |
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\) | |
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\) | |
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\) |
Trong không gian \(Oxyz\), cho hai điểm \(A\left(1;1;-2\right)\) và \(B\left(2;2;1\right)\). Vectơ \(\overrightarrow{AB}\) có tọa độ là
\(\left(3;3;-1\right)\) | |
\(\left(3;1;1\right)\) | |
\(\left(-1;-1;-3\right)\) | |
\(\left(1;1;3\right)\) |
Trong không gian với hệ trục tọa độ \(Oxyz\), cho ba điểm \(A(0;-2;-1)\), \(B(-2;-4;3)\), \(C(1;3;-1)\). Tìm điểm \(M\in(Oxy)\) sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
\(\left(-\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{1}{5};\dfrac{3}{5};0\right)\) | |
\(\left(\dfrac{3}{5};\dfrac{4}{5};0\right)\) | |
\(\left(\dfrac{1}{5};-\dfrac{3}{5};0\right)\) |
Cho \(\vec{m}=(1;0;-1)\), \(\vec{n}=(0;1;1)\). Kết luận nào sai?
Góc của \(\vec{m}\) và \(\vec{n}\) là \(30^\circ\) | |
\(\left[\vec{m},\vec{n}\right]=(1;-1;1)\) | |
\(\vec{m}\cdot\vec{n}=-1\) | |
\(\vec{m}\) và \(\vec{n}\) không cùng phương |
Trong không gian \(Oxyz\), cho \(A(1;2;3)\), \(B(-2;4;4)\), \(C(4;0;5)\). Gọi \(G\) là trọng tâm của tam giác \(ABC\). \(M\) là điểm nằm trên mặt phẳng \((Oxy)\) sao cho độ dài đoạn thẳng \(GM\) ngắn nhất. Tính độ dài đoạn thẳng \(GM\).
\(GM=4\) | |
\(GM=\sqrt{5}\) | |
\(GM=1\) | |
\(GM=\sqrt{2}\) |