Giả sử phương trình $2x^2-4ax-1=0$ có hai nghiệm $x_1,\,x_2$. Tính giá trị của biểu thức $T=\left|x_1-x_2\right|$.
$T=\dfrac{4a^2+2}{3}$ | |
$T=\sqrt{4a^2+2}$ | |
$T=\dfrac{\sqrt{a^2+8}}{2}$ | |
$T=\dfrac{\sqrt{a^2+8}}{4}$ |
Phương trình $ax^2+bx+c=0\,\,\left(a\neq0\right)$ có hai nghiệm trái dấu khi và chỉ khi
$P>0$ | |
$P<0$ | |
$\begin{cases}\Delta&>0\\ S&>0\end{cases}$ | |
$\begin{cases}\Delta&>0\\ S&<0\end{cases}$ |
Phương trình $ax^2+bx+c=0\,\,\left(a\neq0\right)$ có hai nghiệm phân biệt cùng dấu khi và chỉ khi
$\begin{cases}\Delta&>0\\ P&>0\end{cases}$ | |
$\begin{cases}\Delta&\geq0\\ P&>0\end{cases}$ | |
$\begin{cases}\Delta&>0\\ S&>0\end{cases}$ | |
$\begin{cases}\Delta&>0\\ S&<0\end{cases}$ |
Phương trình $\left(m-1\right)x^2+6x-1=0$ có hai nghiệm phân biệt khi
$m>-8$ | |
$m>-\dfrac{5}{4}$ | |
$\begin{cases}m>-8\\ m\neq1\end{cases}$ | |
$\begin{cases}m>-\dfrac{5}{4}\\ m\neq1\end{cases}$ |
Tìm các giá trị của $m$ để phương trình $-2x^2-4x+3=m$ có nghiệm.
$1\leq m\leq5$ | |
$-4\leq m\leq0$ | |
$0\leq m\leq4$ | |
$m\leq 5$ |
Để phương trình \((m-1)x^2+3mx+m^2-m-6=0\) có hai nghiệm trái dấu thì
\(m\in(-\infty;-2)\cup(1;3)\) | |
\(m\in(-\infty;-2]\cup[1;3]\) | |
\(m\in(-2;1)\cup(3;+\infty)\) | |
\(m\in[-2;1]\cup[3;+\infty)\) |
Biết rằng với mọi \(a,\,b\in\mathbb{R}\), phương trình \(\log_2^2x-a\log_2x-3^b=0\) luôn có hai nghiệm phân biệt \(x_1,\,x_2\). Khi đó tích \(x_1\cdot x_2\) bằng
\(3^a\) | |
\(a\) | |
\(b\log_23\) | |
\(2^a\) |
Tính tích các nghiệm của phương trình $$\log_3^2x-2\log_3x-7=0$$
\(2\) | |
\(-7\) | |
\(1\) | |
\(9\) |
Biết rằng phương trình \(\log_2^2(2x)-5\log_2x=0\) có hai nghiệm phân biệt \(x_1,\,x_2\). Tính \(x_1\cdot x_2\).
\(x_1\cdot x_2=8\) | |
\(x_1\cdot x_2=5\) | |
\(x_1\cdot x_2=3\) | |
\(x_1\cdot x_2=1\) |
Với giá trị nào của \(m\) thì phương trình \((m-3)x^2+(m+3)x-(m+1)=0\) có hai nghiệm phân biệt?
\(m\in\left(-\infty;-\dfrac{3}{5}\right)\cup(1;+\infty)\) | |
\(m\in\left(-\infty;-\dfrac{3}{5}\right)\cup(1;3)\cup(3;+\infty)\) | |
\(m\in\left(-\dfrac{3}{5};1\right)\) | |
\(m\in\left(-\dfrac{3}{5};+\infty\right)\) |
Để phương trình \(\left(m^2-4\right)x^2+5x+m=0\) có hai nghiệm trái dấu thì
\(m\in(\infty;-2]\cup[0;2]\) | |
\(m\in(-\infty;-2)\cup(0;2)\) | |
\(m\in(-2;0)\cup(2;+\infty)\) | |
\(m\in(-2;2)\) |
Điều kiện cần và đủ để phương trình \(mx^2+2(m+1)x+m=0\) có hai nghiệm phân biệt là
\(m\neq0\) và \(m>-\dfrac{1}{2}\) | |
\(m>\dfrac{1}{2}\) | |
\(m>-\dfrac{1}{2}\) | |
\(m>0\) |
Có bao nhiêu giá trị nguyên của tham số \(m\in[-7;7]\) để phương trình \(mx^2-2(m+2)x+m-1=0\) có hai nghiệm phân biệt?
\(14\) | |
\(8\) | |
\(7\) | |
\(15\) |
Biết \(\displaystyle\int\limits_1^2{\dfrac{\mathrm{\,d}x}{4x^2-4x+1}}=\dfrac{1}{a}+\dfrac{1}{b}\) thì \(a,\,b\) là nghiệm của phương trình nào sau đây?
\(x^2-5x+6=0\) | |
\(x^2+4x-12=0\) | |
\(2x^2-x-1=0\) | |
\(x^2-9=0\) |
Phương trình \(ax^2+bx+c=0\) có nghiệm duy nhất khi và chỉ khi
\(a=0\) và \(b\neq0\) | |
\(\begin{cases}a\neq0\\ \Delta=0\end{cases}\) hoặc \(\begin{cases}a=0\\ b\neq0\end{cases}\) | |
\(a=b=0\) | |
\(\begin{cases}a\neq0\\ \Delta=0\end{cases}\) |
Phương trình \((m-1)x^2+3x-1=0\) có nghiệm khi và chỉ khi
\(m\geq-\dfrac{5}{4}\) | |
\(m>-\dfrac{5}{4}\) | |
\(m=-\dfrac{5}{4}\) | |
\(m\geq-\dfrac{5}{4}\) và \(m\neq1\) |
Tìm tất cả giá trị của tham số \(m\) để phương trình \(x^2+2mx-m-1=0\) có 2 nghiệm phân biệt \(x_1,\,x_2\) sao cho \(x_1^2+x_2^2=2\).
\(\left[\begin{array}{l}m=-\dfrac{1}{2}\\ m=0\end{array}\right.\) | |
\(m=0\) | |
\(m=-\dfrac{1}{2}\) | |
\(\left[\begin{array}{l}m=\dfrac{1}{2}\\ m=0\end{array}\right.\) |
Gọi \(x_1,\,x_2\) là các nghiệm phương trình \(4x^2-7x-1=0\). Khi đó giá trị của biểu thức \(M=x_1^2+x_2^2\) là
\(M=\dfrac{41}{16}\) | |
\(M=\dfrac{41}{64}\) | |
\(M=\dfrac{57}{16}\) | |
\(M=\dfrac{81}{64}\) |
Giả sử \(x_1\) và \(x_2\) là hai nghiệm của phương trình \(x^2+3x-10=0\). Giá trị của tổng \(\dfrac{1}{x_1}+\dfrac{1}{x_2}\) là
\(\dfrac{3}{10}\) | |
\(-\dfrac{10}{3}\) | |
\(-\dfrac{3}{10}\) | |
\(\dfrac{10}{3}\) |
Tập hợp các giá trị của \(m\) để phương trình \(x^2+mx-m+1=0\) có hai nghiệm trái dấu là
\((1;10)\) | |
\([1;+\infty)\) | |
\((1;+\infty)\) | |
\(\left(-2+\sqrt{8};+\infty\right)\) |