Ngân hàng bài tập

Bài tập tương tự

B

Trong không gian với hệ tọa độ \(Oxyz\), cho \(\overrightarrow{a}=(1;-1;3)\), \(\overrightarrow{b}=(2;0;-1)\). Tìm tọa độ véctơ \(\overrightarrow{u}=2\overrightarrow{a}-3\overrightarrow{b}\).

\(\overrightarrow{u}=\left(1;3;-11\right)\)
\(\overrightarrow{u}=\left(4;2;-9\right)\)
\(\overrightarrow{u}=\left(-4;-5;9\right)\)
\(\overrightarrow{u}=\left(-4;-2;9\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\overrightarrow{a}=\left(a_1;a_2;a_3\right)\), \(\overrightarrow{b}=\left(b_1;b_2;b_3\right)\). Chọn câu đúng trong các câu sau:

\(\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2+a_3b_3\)
\(\overrightarrow{a}+\overrightarrow{b}=\left(b_1-a_1;b_2-a_2;b_3-a_3\right)\)
\(k\overrightarrow{b}=\left(ka_1;ka_2;ka_3\right),\,k\in\mathbb{R}\)
\(\overrightarrow{a}-\overrightarrow{b}=\left(a_2-b_2;a_1-b_1;a_3-b_3\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho \(\vec{a}=(2;1;3)\), \(\vec{b}=(4;-3;5)\), \(\vec{c}=(-2;4;6)\). Tìm tọa độ của vectơ \(\vec{u}=\vec{a}+2\vec{b}-\vec{c}\).

\((10;9;6)\)
\((12;-9;7)\)
\((10;-9;6)\)
\((12;-9;6)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\), cho \(\vec{a}=(2;-3;3)\), \(\vec{b}=(0;2;-1)\), \(\vec{c}=(3;-1;5)\). Tìm tọa độ của vectơ \(\vec{u}=2\vec{a}+3\vec{b}-2\vec{c}\).

\((10;-2;13)\)
\((-2;2;-7)\)
\((-2;-2;7)\)
\((-2;2;7)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian \(Oxyz\) cho hai vectơ \(\vec{x}=(2;1;-3)\) và \(\vec{y}=(1;0;-1)\). Tìm tọa độ của vectơ \(\vec{a}=\vec{x}+2\vec{y}\).

\(\vec{a}=(4;1;-1)\)
\(\vec{a}=(3;1;-4)\)
\(\vec{a}=(0;1;-1)\)
\(\vec{a}=(4;1;-5)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai vectơ $\overrightarrow{u}=(1;2;-2)$ và $\overrightarrow{v}=(2;-2;3)$. Tọa độ của vectơ $\overrightarrow{u}+\overrightarrow{v}$ là

$(-1;4;-5)$
$(1;-4;5)$
$(3;0;1)$
$(3;0;-1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon2x+y-z+3=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng $(P)$?

$\overrightarrow{n_1}=(2;1;-1)$
$\overrightarrow{n_3}=(1;-1;3)$
$\overrightarrow{n_4}=(2;-1;3)$
$\overrightarrow{n_2}=(2;1;3)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là

$\overrightarrow{u_2}=(5;-4;-3)$
$\overrightarrow{u_1}=(5;16;-13)$
$\overrightarrow{u_3}=(5;-16;-13)$
$\overrightarrow{u_2}=(5;16;13)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho các vectơ $\overrightarrow{a}=(2;m-1;3)$, $\overrightarrow{b}=(1;3;-2n)$. Tìm $m,\,n$ để các vectơ $\overrightarrow{a},\,\overrightarrow{b}$ cùng phương.

$m=7$; $n=\dfrac{3}{4}$
$m=1$; $n=0$
$m=4$; $n=-3$
$m=7$; $n=-\dfrac{3}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho vectơ $\overrightarrow{a}=-3\overrightarrow{j}+4\overrightarrow{k}$. Tọa độ của vectơ $\overrightarrow{a}$ là

$(0;-4;3)$
$(-3;0;4)$
$(0;3;4)$
$(0;-3;4)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho đường thẳng $(d)\colon\begin{cases} x=1-t\\ y=-2+2t\\ z=1+t \end{cases}$. Vectơ nào là vectơ chỉ phương của $d$?

$\overrightarrow{u}=(-1;-2;1)$
$\overrightarrow{u}=(1;2;1)$
$\overrightarrow{u}=(1;-2;1)$
$\overrightarrow{u}=(-1;2;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng $(P)\colon x+y+z+1=0$ có một vectơ pháp tuyến là

$\overrightarrow{n_1}=(-1;1;1)$
$\overrightarrow{n_4}=(1;1;-1)$
$\overrightarrow{n_3}=(1;1;1)$
$\overrightarrow{n_2}=(1;-1;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=2+t\\ y=1-2t\\ z=-1+3t \end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?

$\overrightarrow{u_1}=(2;1;-1)$
$\overrightarrow{u_2}=(1;2;3)$
$\overrightarrow{u_3}=(1;-2;3)$
$\overrightarrow{u_4}=(2;1;1)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho đường thẳng $d\colon\begin{cases}x=1-t\\ y=-2+2t\\ z=1+t\end{cases}$. Vectơ nào dưới đây là một vectơ chỉ phương của $d$?

$\overrightarrow{u}=\left(1;-2;1\right)$
$\overrightarrow{u}=\left(1;2;1\right)$
$\overrightarrow{u}=\left(-1;2;1\right)$
$\overrightarrow{u}=\left(-1;-2;1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho hai điểm $A\left(2;-2;1\right)$, $B\left(1;3;-1\right)$. Tọa độ của vectơ $\overrightarrow{AB}$ là

$\left(3;1;0\right)$
$\left(-1;5;-2\right)$
$\left(1;-5;2\right)$
$\left(1;1;2\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon3x-y+2z-1=0$. Vectơ nào dưới đây là một vectơ pháp tuyến của $(P)$?

$\overrightarrow{n_1}=(-3;1;2)$
$\overrightarrow{n_2}=(3;-1;2)$
$\overrightarrow{n_3}=(3;1;2)$
$\overrightarrow{n_4}=(3;1;-2)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho điểm $A(-2;3;5)$. Tọa độ vectơ $\overrightarrow{OA}$ là

$(-2;3;5)$
$(2;-3;5)$
$(-2;-3;5)$
$(2;-3;-5)$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Trong không gian $Oxyz$, mặt phẳng $\left(P\right)\colon3x-z+2=0$ có một vectơ pháp tuyến là

$\overrightarrow{n}=\left(3;0;-1\right)$
$\overrightarrow{n}=\left(3;-1;2\right)$
$\overrightarrow{n}=\left(-3;0;-1\right)$
$\overrightarrow{n}=\left(3;-1;0\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x-y+2z=0$. Một vectơ pháp tuyến của mặt phẳng $(P)$ là

$\overrightarrow{n}=(-1;-1;2)$
$\overrightarrow{m}=(1;1;0)$
$\overrightarrow{p}=(2;1;-1)$
$\overrightarrow{q}=(1;-1;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, độ dài của vectơ $\overrightarrow{u}=(1;-2;2)$ là

$3$
$5$
$1$
$9$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự