Tìm các giá trị của \(m\) để hai đường thẳng \(d_1\colon\begin{cases}x=2+2t\\ y=1+mt\end{cases}\) và \(d_2\colon4x-3y+m=0\) trùng nhau?
\(m=-3\) | |
\(m=1\) | |
\(m=\dfrac{4}{3}\) | |
\(m\in\varnothing\) |
Tìm \(m\) để hai đường thẳng \(d_1\colon2x-3y+4=0\) và \(d_2\colon\begin{cases}x=2-3t\\ y=1-4mt\end{cases}\) cắt nhau.
\(m\neq-\dfrac{1}{2}\) | |
\(m\neq2\) | |
\(m\neq\dfrac{1}{2}\) | |
\(m=\dfrac{1}{2}\) |
Đường thẳng nào sau đây không có điểm chung với đường thẳng \(\delta\colon x-3y+4=0\)?
\(\gamma\colon\begin{cases}x=1+t\\ y=2+3t\end{cases}\) | |
\(\omega\colon\begin{cases}x=1-t\\ y=2+3t\end{cases}\) | |
\(\lambda\colon\begin{cases}x=1-3t\\ y=2+t\end{cases}\) | |
\(\varphi\colon\begin{cases}x=1-3t\\ y=2-t\end{cases}\) |
Đường thẳng nào sau đây song song với đường thẳng \(\Delta\colon2x+3y-1=0\)?
\(\lambda\colon2x+3y+1=0\) | |
\(\omega\colon x-2y+5=0\) | |
\(\gamma\colon2x-3y+3=0\) | |
\(\varphi\colon4x+6y-2=0\) |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon5x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-5t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon3x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-3t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon7x+2y-1=0\) và \(\Delta_2\colon\begin{cases}x=4+t\\ y=1-5t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon\dfrac{x}{3}-\dfrac{y}{4}=1\) và \(d_2\colon3x+4y-10=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon3x-2y-6=0\) và \(d_2\colon6x-2y-8=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon x-2y+1=0\) và \(d_2\colon-3x+6y-10=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon3x+4y+5=0\) và \(\Delta_2\colon8x-6y+1=0\).
Song song | |
Trùng nhau | |
Cắt nhau nhưng không vuông góc | |
Cắt nhau và vuông góc |
Cặp đường thẳng nào sau đây cắt nhau tại một điểm?
\(d_1\colon y=3x-5\) và \(d_2\colon y=3x+1\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon4x+6y+1=0\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon4x+6y-8=0\) | |
\(d_1\colon2x+3y-4=0\) và \(d_2\colon6x-4y+3=0\) |
Với giá trị nào của \(m\) thì hai đường thẳng \(\Delta_1\colon mx+y-19=0\) và \(\Delta_2\colon(m-1)x+(m+1)y-20=0\) vuông góc?
\(m\in\Bbb{R}\) | |
\(m=2\) | |
\(m\in\varnothing\) | |
\(m=\pm1\) |
Cho hai đường thẳng \(d_1\colon\begin{cases}x=2+t\\ y=-3+2t\end{cases}\) và \(d_2\colon\begin{cases}x=5-t'\\ y=-7+3t'\end{cases}\). Chọn khẳng định đúng.
\(d_1\parallel d_2\) | |
\(d_1\cap d_2=M(1;3)\) | |
\(d_1\equiv d_2\) | |
\(d_1\cap d_2=N(3;-1)\) |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon\begin{cases}x=2+3t\\ y=-2t\end{cases}\) và \(d_2\colon\begin{cases}x=2t'\\ y=-2+3t'\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon\begin{cases}x=-3+4t\\ y=2-6t\end{cases}\) và \(d_2\colon\begin{cases}x=1-2t'\\ y=4+3t'\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon\begin{cases}x=-1+t\\ y=-2-2t\end{cases}\) và \(d_2\colon\begin{cases}x=2-2t'\\ y=-8+4t'\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Phương trình nào sau đây là phương trình tham số của đường thẳng \(d\colon x-y+3=0\)?
\(\begin{cases}x=t\\ y=3+t\end{cases}\) | |
\(\begin{cases}x=t\\ y=3-t\end{cases}\) | |
\(\begin{cases}x=3\\ y=t\end{cases}\) | |
\(\begin{cases}x=2+t\\ y=1+t\end{cases}\) |
Trong không gian \(Oxyz\), cho hai đường thẳng \(d_1\colon\begin{cases}
x=1+t\\ y=2-t\\ z=3+2t\end{cases}\) và \(d_2\colon\dfrac{x-1}{2}=\dfrac{y-m}{1}=\dfrac{z+2}{-1}\) (với \(m\) là tham số). Tìm \(m\) để \(d_1\) và \(d_2\) cắt nhau.
\(m=9\) | |
\(m=4\) | |
\(m=5\) | |
\(m=7\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+4x-2y-8=0\), biết tiếp tuyến vuông góc với đường thẳng \(d\colon2x-3y+2018=0\).
\(3x+2y-17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y+9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y-17=0\) hoặc \(3x+2y+9=0\) |