Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon x^2+y^2+4x-2y-8=0\), biết tiếp tuyến vuông góc với đường thẳng \(d\colon2x-3y+2018=0\).
\(3x+2y-17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y+9=0\) | |
\(3x+2y+17=0\) hoặc \(3x+2y-9=0\) | |
\(3x+2y-17=0\) hoặc \(3x+2y+9=0\) |
Đường thẳng \(d\) đi qua điểm \(M(-1;2)\) và vuông góc với đường thẳng \(\Delta\colon2x+y-3=0\) có phương trình tổng quát là
\(2x+y=0\) | |
\(x-2y-3=0\) | |
\(x+y-1=0\) | |
\(x-2y+5=0\) |
Đường thẳng \(\Delta\) đi qua điểm \(S\left(5;1\right)\) và vuông góc với đường thẳng \(d\colon 4x-3y+5=0\). \(\Delta\) có phương trình là
\(\begin{cases}x=5+3t\\ y=1+4t\end{cases}\) | |
\(\begin{cases}x=5+4t\\ y=1-3t\end{cases}\) | |
\(4x-3y+17=0\) | |
\(4x-3y-17=0\) |
Tìm các giá trị của \(m\) để hai đường thẳng \(d_1\colon\begin{cases}x=2+2t\\ y=1+mt\end{cases}\) và \(d_2\colon4x-3y+m=0\) trùng nhau?
\(m=-3\) | |
\(m=1\) | |
\(m=\dfrac{4}{3}\) | |
\(m\in\varnothing\) |
Tìm \(m\) để hai đường thẳng \(d_1\colon2x-3y+4=0\) và \(d_2\colon\begin{cases}x=2-3t\\ y=1-4mt\end{cases}\) cắt nhau.
\(m\neq-\dfrac{1}{2}\) | |
\(m\neq2\) | |
\(m\neq\dfrac{1}{2}\) | |
\(m=\dfrac{1}{2}\) |
Với giá trị nào của \(m\) thì hai đường thẳng \(d_1\colon3x+4y+10=0\) và \(d_2\colon(2m-1)x+m^2y+10=0\) trùng nhau?
\(m=\pm2\) | |
\(m=\pm1\) | |
\(m=2\) | |
\(m=-2\) |
Cặp đường thẳng nào sau đây vuông góc với nhau?
\(\delta_1\colon\begin{cases}x=t\\ y=-1-2t\end{cases}\) và \(\delta_2\colon2x+y+1=0\) | |
\(\lambda_1\colon x-2=0\) và \(\lambda_2\colon\begin{cases}x=t\\ y=0\end{cases}\) | |
\(\gamma_1\colon2x-y+3=0\) và \(\gamma_2\colon x-2y+1=0\) | |
\(\varphi_1\colon2x-y+3=0\) và \(\varphi_2\colon4x-2y+1=0\) |
Phương trình nào sau đây là phương trình tham số của đường thẳng \(d\colon x-y+3=0\)?
\(\begin{cases}x=t\\ y=3+t\end{cases}\) | |
\(\begin{cases}x=t\\ y=3-t\end{cases}\) | |
\(\begin{cases}x=3\\ y=t\end{cases}\) | |
\(\begin{cases}x=2+t\\ y=1+t\end{cases}\) |
Viết phương trình tiếp tuyến của đường tròn \(\left(\mathscr{C}\right)\colon\left(x-2\right)^2+\left(y-1\right)^2=25\), biết tiếp tuyến song song với đường thẳng \(d\colon4x+3y+14=0\).
\(4x+3y+14=0\) hoặc \(4x+3y-36=0\) | |
\(4x+3y+14=0\) | |
\(4x+3y-36=0\) | |
\(4x+3y-14=0\) hoặc \(4x+3y-36=0\) |
Đường thẳng đi qua điểm \(D(3;5)\) và có vectơ chỉ phương \(\vec{u}=(4;-1)\) thì phương trình tổng quát là
\(\begin{cases}x=3+4t\\ y=5-t\end{cases}\) | |
\(3x+5y-23=0\) | |
\(x+4y-23=0\) | |
\(4x-y-7=0\) |
Đường thẳng \(n\colon\begin{cases}
x=3-4t \\
y=-1+4t \\
\end{cases}\) có phương trình tổng quát là
\(x+y-2=0\) | |
\(x-y=4\) | |
\(x-y+2=0\) | |
\(4x+4y-16=0\) |
Đường thẳng nào sau đây không có điểm chung với đường thẳng \(\delta\colon x-3y+4=0\)?
\(\gamma\colon\begin{cases}x=1+t\\ y=2+3t\end{cases}\) | |
\(\omega\colon\begin{cases}x=1-t\\ y=2+3t\end{cases}\) | |
\(\lambda\colon\begin{cases}x=1-3t\\ y=2+t\end{cases}\) | |
\(\varphi\colon\begin{cases}x=1-3t\\ y=2-t\end{cases}\) |
Đường thẳng nào sau đây song song với đường thẳng \(\Delta\colon2x+3y-1=0\)?
\(\lambda\colon2x+3y+1=0\) | |
\(\omega\colon x-2y+5=0\) | |
\(\gamma\colon2x-3y+3=0\) | |
\(\varphi\colon4x+6y-2=0\) |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon5x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-5t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon3x+2y-14=0\) và \(\Delta_2\colon\begin{cases}x=4+2t\\ y=1-3t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(\Delta_1\colon7x+2y-1=0\) và \(\Delta_2\colon\begin{cases}x=4+t\\ y=1-5t\end{cases}\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon\dfrac{x}{3}-\dfrac{y}{4}=1\) và \(d_2\colon3x+4y-10=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon3x-2y-6=0\) và \(d_2\colon6x-2y-8=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Xét vị trí tương đối của hai đường thẳng \(d_1\colon x-2y+1=0\) và \(d_2\colon-3x+6y-10=0\).
Trùng nhau | |
Song song | |
Vuông góc với nhau | |
Cắt nhau nhưng không vuông góc |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(2;-1)\), \(B(4;5)\) và \(C(-3;2)\). Viết phương trình đường cao của tam giác kẻ từ đỉnh \(C\).
\(x+y-1=0\) | |
\(x+3y-3=0\) | |
\(3x+y+11=0\) | |
\(3x-y+11=0\) |